Unassisted electrochemical H2O2 production coupled to glycerol oxidation

IF 20 0 CHEMISTRY, MULTIDISCIPLINARY
Dongrak Oh, Seon Woo Hwang, Dong Yeon Kim, Jesse E. Matthews, Jinyoung Lee, Jaime E. Avilés Acosta, Sang-Won Lee, Yi Xu, Ara Cho, Dong Un Lee, Thomas F. Jaramillo, Dong-Hwa Seo, Ji-Wook Jang
{"title":"Unassisted electrochemical H2O2 production coupled to glycerol oxidation","authors":"Dongrak Oh, Seon Woo Hwang, Dong Yeon Kim, Jesse E. Matthews, Jinyoung Lee, Jaime E. Avilés Acosta, Sang-Won Lee, Yi Xu, Ara Cho, Dong Un Lee, Thomas F. Jaramillo, Dong-Hwa Seo, Ji-Wook Jang","doi":"10.1038/s44160-025-00774-y","DOIUrl":null,"url":null,"abstract":"Hydrogen peroxide (H2O2) is not only a key eco-friendly oxidizer but also a promising energy carrier with an energy density comparable to that of compressed hydrogen. The industrial production of H2O2 relies on the energy-intensive and environmentally detrimental anthraquinone process, necessitating the exploration of greener alternatives. Here we demonstrate sustainable and unassisted electrochemical H2O2 production (via the two-electron oxygen reduction reaction) coupled to the oxidative valorization of glycerol, a biomass energy by-product, operating without external electric or solar energy inputs. We applied bismuth-loaded Pt and oxidized carbon nanotube electrocatalysts, for glycerol oxidation reaction and two-electron oxygen reduction reaction, respectively, which possess onset potentials close to the theoretical values for the electrochemical reactions. With this system, we achieved a high H2O2 production rate of approximately 8.475 μmol cm−2 min−1 and high glycerate selectivity for in situ glycerol oxidation reaction (74%), while producing renewable electricity on-site. Hydrogen peroxide (H2O2) is an eco-friendly oxidizer and a promising energy carrier, but it is primarily synthesized through the energy-intensive anthraquinone process. Here sustainable and unassisted electrochemical H2O2 production coupled to glycerol oxidation is reported, operating without an external bias or solar energy input.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"4 8","pages":"931-939"},"PeriodicalIF":20.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-025-00774-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen peroxide (H2O2) is not only a key eco-friendly oxidizer but also a promising energy carrier with an energy density comparable to that of compressed hydrogen. The industrial production of H2O2 relies on the energy-intensive and environmentally detrimental anthraquinone process, necessitating the exploration of greener alternatives. Here we demonstrate sustainable and unassisted electrochemical H2O2 production (via the two-electron oxygen reduction reaction) coupled to the oxidative valorization of glycerol, a biomass energy by-product, operating without external electric or solar energy inputs. We applied bismuth-loaded Pt and oxidized carbon nanotube electrocatalysts, for glycerol oxidation reaction and two-electron oxygen reduction reaction, respectively, which possess onset potentials close to the theoretical values for the electrochemical reactions. With this system, we achieved a high H2O2 production rate of approximately 8.475 μmol cm−2 min−1 and high glycerate selectivity for in situ glycerol oxidation reaction (74%), while producing renewable electricity on-site. Hydrogen peroxide (H2O2) is an eco-friendly oxidizer and a promising energy carrier, but it is primarily synthesized through the energy-intensive anthraquinone process. Here sustainable and unassisted electrochemical H2O2 production coupled to glycerol oxidation is reported, operating without an external bias or solar energy input.

Abstract Image

与甘油氧化耦合的无辅助电化学H2O2生产
过氧化氢(H2O2)不仅是一种重要的生态友好型氧化剂,而且具有与压缩氢相当的能量密度,是一种很有前途的能量载体。H2O2的工业生产依赖于能源密集型和对环境有害的蒽醌工艺,因此需要探索更环保的替代品。在这里,我们展示了可持续和无辅助的电化学H2O2生产(通过双电子氧还原反应)与甘油(一种生物质能源副产品)的氧化增值相结合,在没有外部电力或太阳能输入的情况下运行。我们将负载铋的铂电催化剂和氧化碳纳米管电催化剂分别应用于甘油氧化反应和双电子氧还原反应,其起始电位接近电化学反应的理论值。利用该系统,我们实现了约8.475 μmol cm−2 min−1的高H2O2产率和高甘油原位氧化反应的选择性(74%),同时在现场产生可再生电力。过氧化氢(H2O2)是一种生态友好的氧化剂,也是一种很有前途的能量载体,但它主要是通过高耗能的蒽醌法合成的。在这里,报告了可持续的、无辅助的电化学H2O2生产与甘油氧化耦合,在没有外部偏压或太阳能输入的情况下运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信