Closed-loop recycling of mixed polyesters via catalytic methanolysis and monomer separations

Julia B. Curley, Yuanzhe Liang, Jason S. DesVeaux, Hoon Choi, Ryan W. Clarke, Anjani K. Maurya, William E. Michener, Lisa M. Stanley, Yue Wu, Sarah A. Hesse, Andrea L. Baer, Hudson A. Neyer, Christopher J. Tassone, Alan J. Jacobsen, Ofei D. Mante, Gregg T. Beckham, Katrina M. Knauer
{"title":"Closed-loop recycling of mixed polyesters via catalytic methanolysis and monomer separations","authors":"Julia B. Curley, Yuanzhe Liang, Jason S. DesVeaux, Hoon Choi, Ryan W. Clarke, Anjani K. Maurya, William E. Michener, Lisa M. Stanley, Yue Wu, Sarah A. Hesse, Andrea L. Baer, Hudson A. Neyer, Christopher J. Tassone, Alan J. Jacobsen, Ofei D. Mante, Gregg T. Beckham, Katrina M. Knauer","doi":"10.1038/s44286-025-00275-x","DOIUrl":null,"url":null,"abstract":"A sustainable plastics future will require high recycling rates and the use of biogenic feedstocks, which together are catalyzing interest in replacing fossil fuel-derived, noncircular polyolefin packaging materials with bio-based, chemically recyclable polyesters. Here we present a catalytic methanolysis process capable of depolymerizing both fossil fuel- and bio-based polyesters, including polyethylene terephthalate (PET), polylactic acid, polybutylene adipate terephthalate and polybutylene succinate in one reactor under mild conditions with high monomer yields. We scaled this process to 1 kg and integrated separations engineering using activated carbon, crystallization, extraction and distillation to remove contaminants and recover individual monomers from depolymerized mixed polyesters with high yield and purity. PET synthesized from monomers isolated from postconsumer materials showed comparable mechanical and thermal properties to PET from commercial monomers. Techno-economic analysis and life cycle assessment show that this process is economically viable and exhibits lower environmental impacts than primary production of respective polymers. Net-zero bioplastics are possible when combined with high recycling rates. This study presents a mixed polyester recycling process integrated with monomer separation and purification for both fossil- and bio-based plastics. Techno-economic and life cycle analyses confirm its environmental and commercial advantages, advancing the path toward circular, low-emission polyester plastics.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 9","pages":"568-580"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-025-00275-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A sustainable plastics future will require high recycling rates and the use of biogenic feedstocks, which together are catalyzing interest in replacing fossil fuel-derived, noncircular polyolefin packaging materials with bio-based, chemically recyclable polyesters. Here we present a catalytic methanolysis process capable of depolymerizing both fossil fuel- and bio-based polyesters, including polyethylene terephthalate (PET), polylactic acid, polybutylene adipate terephthalate and polybutylene succinate in one reactor under mild conditions with high monomer yields. We scaled this process to 1 kg and integrated separations engineering using activated carbon, crystallization, extraction and distillation to remove contaminants and recover individual monomers from depolymerized mixed polyesters with high yield and purity. PET synthesized from monomers isolated from postconsumer materials showed comparable mechanical and thermal properties to PET from commercial monomers. Techno-economic analysis and life cycle assessment show that this process is economically viable and exhibits lower environmental impacts than primary production of respective polymers. Net-zero bioplastics are possible when combined with high recycling rates. This study presents a mixed polyester recycling process integrated with monomer separation and purification for both fossil- and bio-based plastics. Techno-economic and life cycle analyses confirm its environmental and commercial advantages, advancing the path toward circular, low-emission polyester plastics.

Abstract Image

通过催化甲醇分解和单体分离的混合聚酯闭环回收
可持续塑料的未来将需要高回收率和生物原料的使用,这两者共同促进了人们对用生物基、化学可回收的聚酯代替化石燃料衍生的非循环聚烯烃包装材料的兴趣。在这里,我们提出了一种催化甲醇分解工艺,能够在一个反应器中在温和的条件下以高单体产量解聚化石燃料和生物基聚酯,包括聚对苯二甲酸乙二醇酯(PET),聚乳酸,聚己二酸丁二酯和聚丁二酸丁二酯。我们将这一工艺扩大到1公斤,并采用活性炭、结晶、提取和蒸馏的综合分离工程,以去除污染物,并从解聚的混合聚酯中回收单体,产量高,纯度高。从消费后材料中分离的单体合成的PET具有与商业单体相当的机械和热性能。技术经济分析和生命周期评估表明,该工艺在经济上是可行的,并且比各自聚合物的初级生产对环境的影响更小。与高回收率相结合,净零生物塑料是可能的。本研究提出了一种混合聚酯回收工艺,结合化石和生物基塑料的单体分离和纯化。技术经济和生命周期分析证实了其环境和商业优势,推动了循环低排放聚酯塑料的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信