Qi Huang, Abdelhay Ali, Abdulkadir Celik, Gianluca Setti, Jaafar Elmirghani, Noha Al-Harthi, Khaled N. Salama, Shreyas Sen, Mohammed E. Fouda, Ahmed M. Eltawil
{"title":"Human body communication transceivers","authors":"Qi Huang, Abdelhay Ali, Abdulkadir Celik, Gianluca Setti, Jaafar Elmirghani, Noha Al-Harthi, Khaled N. Salama, Shreyas Sen, Mohammed E. Fouda, Ahmed M. Eltawil","doi":"10.1038/s44287-025-00160-y","DOIUrl":null,"url":null,"abstract":"Although advances in medical technology have facilitated access to treatments and preventative protocols, health care remains constrained by frequent, multiple doctor visits, disrupting daily routines and burdening medical infrastructure. The Internet of Bodies offers a transformative solution by integrating wearable, implantable, ingestible and injectable devices in, on and around the body and thus enabling seamless connectivity in biomedical applications. Since the term was first introduced in the mid-1990s, the Internet of Bodies has made notable progress owing to advances in miniaturized electronics, flexible substrates and low-power design. A critical component of this development is the introduction of human body communication (HBC), which uses the human body as a transmission medium. By replacing the radio front-end with simple direct skin interfaces, sensing and communication modules become smaller, lighter, more energy-efficient and accessible. In this Review, we focus on the role of HBC transceivers for next-generation health-care and body-area networks. We discuss the fundamental principles of HBC, including signal propagation, channel modelling and performance trade-offs. Key design challenges such as dynamic channel variations, skin–electrode interfaces, interference, safety regulations and energy efficiency are analysed. Additionally, we explore the circuit design techniques that affect HBC performance and adaptability. Advancements in miniaturized electronics, low-power design and deep-learning-driven transceiver architectures are needed to further unlock the potential of HBC systems, paving the way for their widespread adoption in personalized health-care and secure body-centric communication systems. By exchanging messages using the human body as a communication medium, human body communication offers a mean to design low-power, miniature Internet of bodies nodes. Accurate channel modelling and low-power strategies are key to HBC widespread adoption.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"2 6","pages":"374-389"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44287-025-00160-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Although advances in medical technology have facilitated access to treatments and preventative protocols, health care remains constrained by frequent, multiple doctor visits, disrupting daily routines and burdening medical infrastructure. The Internet of Bodies offers a transformative solution by integrating wearable, implantable, ingestible and injectable devices in, on and around the body and thus enabling seamless connectivity in biomedical applications. Since the term was first introduced in the mid-1990s, the Internet of Bodies has made notable progress owing to advances in miniaturized electronics, flexible substrates and low-power design. A critical component of this development is the introduction of human body communication (HBC), which uses the human body as a transmission medium. By replacing the radio front-end with simple direct skin interfaces, sensing and communication modules become smaller, lighter, more energy-efficient and accessible. In this Review, we focus on the role of HBC transceivers for next-generation health-care and body-area networks. We discuss the fundamental principles of HBC, including signal propagation, channel modelling and performance trade-offs. Key design challenges such as dynamic channel variations, skin–electrode interfaces, interference, safety regulations and energy efficiency are analysed. Additionally, we explore the circuit design techniques that affect HBC performance and adaptability. Advancements in miniaturized electronics, low-power design and deep-learning-driven transceiver architectures are needed to further unlock the potential of HBC systems, paving the way for their widespread adoption in personalized health-care and secure body-centric communication systems. By exchanging messages using the human body as a communication medium, human body communication offers a mean to design low-power, miniature Internet of bodies nodes. Accurate channel modelling and low-power strategies are key to HBC widespread adoption.