{"title":"Mutual promotion of triboelectric nanogenerators and field-effect transistors towards the IoT","authors":"Wenlong Ma, Yaxue Sun, Congyu Wang, Peng Wang","doi":"10.1038/s44287-025-00193-3","DOIUrl":null,"url":null,"abstract":"The real-world deployment of the Internet of Things (IoT) infrastructures faces high energy demands. To tackle this demand, triboelectric nanogenerators and field-effect transistors (FETs) led to the emergence of tribotronic transistors that enable active mechanosensation by converting mechanical stimuli into tribo-potential, and droplet electricity generators (DEGs) that enhance the efficiency of raindrop energy harvesting through the bulk effect of FET-inspired architectures. In this Review, we explore the working mechanisms and design principles of tribotronic transistors and DEGs, highlighting the key scientific and technical challenges that must be overcome for their seamless integration into global IoT networks. We highlight the development of advanced devices for IoT data collection, memory and processing, and ambient energy harvesting in near-perpetual IoT networks, facilitating advancements in IoT applications including tactile sensors, artificial synapses, energy harvesters and self-powered sensors. Finally, we discuss key areas requiring further study, including understanding fundamental mechanisms, optimizing system design and addressing practical challenges in the application of tribotronic transistors and DEGs for large-scale IoT networks and self-powered sensors. This Review outlines the co-development of triboelectric nanogenerators and field-effect transistors into tribotronic transistors and droplet energy generators, which can harvest energy from small mechanical motion to power the Internet of Things.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"2 8","pages":"541-554"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44287-025-00193-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The real-world deployment of the Internet of Things (IoT) infrastructures faces high energy demands. To tackle this demand, triboelectric nanogenerators and field-effect transistors (FETs) led to the emergence of tribotronic transistors that enable active mechanosensation by converting mechanical stimuli into tribo-potential, and droplet electricity generators (DEGs) that enhance the efficiency of raindrop energy harvesting through the bulk effect of FET-inspired architectures. In this Review, we explore the working mechanisms and design principles of tribotronic transistors and DEGs, highlighting the key scientific and technical challenges that must be overcome for their seamless integration into global IoT networks. We highlight the development of advanced devices for IoT data collection, memory and processing, and ambient energy harvesting in near-perpetual IoT networks, facilitating advancements in IoT applications including tactile sensors, artificial synapses, energy harvesters and self-powered sensors. Finally, we discuss key areas requiring further study, including understanding fundamental mechanisms, optimizing system design and addressing practical challenges in the application of tribotronic transistors and DEGs for large-scale IoT networks and self-powered sensors. This Review outlines the co-development of triboelectric nanogenerators and field-effect transistors into tribotronic transistors and droplet energy generators, which can harvest energy from small mechanical motion to power the Internet of Things.