Augmentation of wastewater-based epidemiology with machine learning to support global health surveillance

IF 24.1
Eva Aßmann, Timo Greiner, Hugues Richard, Matthew Wade, Shelesh Agrawal, Fabian Amman, Sindy Böttcher, Susanne Lackner, Markus Landthaler, Serghei Mangul, Viorel Munteanu, Fotis Psomopoulos, Maureen Smith, Maria Trofimova, Alexander Ullrich, Max von Kleist, Emanuel Wyler, Martin Hölzer, Christopher Irrgang
{"title":"Augmentation of wastewater-based epidemiology with machine learning to support global health surveillance","authors":"Eva Aßmann, Timo Greiner, Hugues Richard, Matthew Wade, Shelesh Agrawal, Fabian Amman, Sindy Böttcher, Susanne Lackner, Markus Landthaler, Serghei Mangul, Viorel Munteanu, Fotis Psomopoulos, Maureen Smith, Maria Trofimova, Alexander Ullrich, Max von Kleist, Emanuel Wyler, Martin Hölzer, Christopher Irrgang","doi":"10.1038/s44221-025-00444-5","DOIUrl":null,"url":null,"abstract":"Wastewater-based epidemiology (WBE) has proven to be a valuable tool for monitoring the evolution and spread of global health threats, from pathogens to antimicrobial resistances. Throughout the COVID-19 pandemic, multiple wastewater surveillance programmes have advanced statistical and machine learning methods for detecting pathogens from wastewater sequencing data and correlating measured targets with the represented population to infer meaningful conclusions for public health. Integrating contextual data can account for measurement uncertainties across the WBE workflow that affect the reliability of analyses. However, the broader availability and harmonization of data are major obstacles to method development. Here we review the benefits and limitations of wastewater-related data streams, highlighting the potential of machine learning to leverage these streams for normalization and other WBE applications. We emphasize the relevance of developing global frameworks for integrating WBE with other health surveillance systems and discuss next steps to address current and foreseeable challenges for robust and interpretable machine learning-enhanced WBE. Wastewater-based epidemiology has already proven to be a powerful tool to monitor the spread of a number of diseases. This Perspective discusses the integration with machine learning, highlighting its potential in a number of wastewater-based epidemiology applications.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 7","pages":"753-763"},"PeriodicalIF":24.1000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature water","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44221-025-00444-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wastewater-based epidemiology (WBE) has proven to be a valuable tool for monitoring the evolution and spread of global health threats, from pathogens to antimicrobial resistances. Throughout the COVID-19 pandemic, multiple wastewater surveillance programmes have advanced statistical and machine learning methods for detecting pathogens from wastewater sequencing data and correlating measured targets with the represented population to infer meaningful conclusions for public health. Integrating contextual data can account for measurement uncertainties across the WBE workflow that affect the reliability of analyses. However, the broader availability and harmonization of data are major obstacles to method development. Here we review the benefits and limitations of wastewater-related data streams, highlighting the potential of machine learning to leverage these streams for normalization and other WBE applications. We emphasize the relevance of developing global frameworks for integrating WBE with other health surveillance systems and discuss next steps to address current and foreseeable challenges for robust and interpretable machine learning-enhanced WBE. Wastewater-based epidemiology has already proven to be a powerful tool to monitor the spread of a number of diseases. This Perspective discusses the integration with machine learning, highlighting its potential in a number of wastewater-based epidemiology applications.

Abstract Image

利用机器学习加强基于废水的流行病学,以支持全球健康监测
基于废水的流行病学(WBE)已被证明是监测从病原体到抗菌素耐药性等全球健康威胁演变和传播的宝贵工具。在2019冠状病毒病大流行期间,多个废水监测规划采用了先进的统计和机器学习方法,从废水测序数据中检测病原体,并将测量目标与所代表人群相关联,以推断对公共卫生有意义的结论。集成上下文数据可以解释跨WBE工作流的测量不确定性,这些不确定性会影响分析的可靠性。然而,数据的广泛可用性和一致性是方法开发的主要障碍。在这里,我们回顾了废水相关数据流的优点和局限性,强调了机器学习利用这些数据流进行规范化和其他WBE应用的潜力。我们强调开发将WBE与其他健康监测系统整合的全球框架的重要性,并讨论下一步措施,以应对强大且可解释的机器学习增强的WBE当前和可预见的挑战。基于废水的流行病学已被证明是监测许多疾病传播的有力工具。本展望讨论了与机器学习的集成,强调了其在一些基于废水的流行病学应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信