{"title":"Tailored synthesis of circular polyolefins","authors":"Peng-An Chen, Xiaohui Kang, Kangkang Li, Zhongbao Jian","doi":"10.1038/s41893-025-01524-w","DOIUrl":null,"url":null,"abstract":"Accumulation of plastic waste in the environment is not only a pressing environmental problem but also a waste of resources. Developing chemically recyclable plastics is deemed a viable approach to address the ever-growing plastic crisis, but the synthesis of circular polyolefins remains challenging. Here we demonstrate a ring-strain matched concept for the tailored synthesis of circular polyolefins. By designing a well-defined 16-membered unsaturated lactone (Ester-16), a family of chemically recyclable, high-molecular-weight, high-density polyethylene (HDPE)-like materials is produced by the copolymerization of cyclooctene (COE) with Ester-16, followed by exhaustive hydrogenation. These HDPE-like materials have the desirable bulk properties of HDPE. They can be degraded into a well-defined and easily separable macromonomer, specifically AB-like telechelic PE. The molecular weight of the macromonomer can be precisely tailored as required and depends solely on the feed ratio of [COE]/[Ester-16]. The recycled macromonomer can be easily repolymerized into a high-molecular-weight HDPE-like material. This macromonomer–polymer–macromonomer lifecycle rather than monomer–polymer–monomer lifecycle can be repeated with quantitative yields using a facile isolation process. Overall, this work opens opportunities to improve the sustainability of plastics. Developing recyclable circular plastics is a viable approach to reshape the currently unsustainable plastics consumption pattern. Here the authors show a design to obtain recyclable polyolefin plastics with a tailored macromonomer–polymer–tailored macromonomer circular lifecycle.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"8 4","pages":"422-431"},"PeriodicalIF":27.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-025-01524-w","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Accumulation of plastic waste in the environment is not only a pressing environmental problem but also a waste of resources. Developing chemically recyclable plastics is deemed a viable approach to address the ever-growing plastic crisis, but the synthesis of circular polyolefins remains challenging. Here we demonstrate a ring-strain matched concept for the tailored synthesis of circular polyolefins. By designing a well-defined 16-membered unsaturated lactone (Ester-16), a family of chemically recyclable, high-molecular-weight, high-density polyethylene (HDPE)-like materials is produced by the copolymerization of cyclooctene (COE) with Ester-16, followed by exhaustive hydrogenation. These HDPE-like materials have the desirable bulk properties of HDPE. They can be degraded into a well-defined and easily separable macromonomer, specifically AB-like telechelic PE. The molecular weight of the macromonomer can be precisely tailored as required and depends solely on the feed ratio of [COE]/[Ester-16]. The recycled macromonomer can be easily repolymerized into a high-molecular-weight HDPE-like material. This macromonomer–polymer–macromonomer lifecycle rather than monomer–polymer–monomer lifecycle can be repeated with quantitative yields using a facile isolation process. Overall, this work opens opportunities to improve the sustainability of plastics. Developing recyclable circular plastics is a viable approach to reshape the currently unsustainable plastics consumption pattern. Here the authors show a design to obtain recyclable polyolefin plastics with a tailored macromonomer–polymer–tailored macromonomer circular lifecycle.
期刊介绍:
Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions.
Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.