A primer on power and sample size calculations for randomisation inference with experimental data

IF 1.3 3区 经济学 Q2 BUSINESS, FINANCE
Brandon Hauser, Mauricio Olivares
{"title":"A primer on power and sample size calculations for randomisation inference with experimental data","authors":"Brandon Hauser,&nbsp;Mauricio Olivares","doi":"10.1111/1475-5890.70004","DOIUrl":null,"url":null,"abstract":"<p>This paper revisits the problem of power analysis and sample size calculations in randomised experiments, with a focus on settings where inference on average treatment effects is conducted using randomisation tests. While standard formulas based on the two-sample <span></span><math>\n <semantics>\n <mi>t</mi>\n <annotation>$t$</annotation>\n </semantics></math>-test are widely used in practice, we show that these calculations may yield misleading results when directly applied to randomisation-based inference – unless certain assumptions are met. We demonstrate that differences in potential outcome variances or unequal group sizes can distort the behaviour of the randomisation test, leading to incorrect power and flawed sample size calculations. However, a simple adjustment – studentising the test statistic – restores the validity of the randomisation test in large samples. This adjustment allows researchers to safely apply standard power and sample size formulas, even when using randomisation inference. We extend these results to a range of experimental designs commonly used in applied economics, including stratified randomisation, matched pairs and cluster-randomised trials. Throughout, we provide practical guidance to help researchers ensure that their design-stage calculations remain valid under the inferential methods they plan to use.</p>","PeriodicalId":51602,"journal":{"name":"Fiscal Studies","volume":"46 3","pages":"349-371"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fiscal Studies","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1475-5890.70004","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper revisits the problem of power analysis and sample size calculations in randomised experiments, with a focus on settings where inference on average treatment effects is conducted using randomisation tests. While standard formulas based on the two-sample t $t$ -test are widely used in practice, we show that these calculations may yield misleading results when directly applied to randomisation-based inference – unless certain assumptions are met. We demonstrate that differences in potential outcome variances or unequal group sizes can distort the behaviour of the randomisation test, leading to incorrect power and flawed sample size calculations. However, a simple adjustment – studentising the test statistic – restores the validity of the randomisation test in large samples. This adjustment allows researchers to safely apply standard power and sample size formulas, even when using randomisation inference. We extend these results to a range of experimental designs commonly used in applied economics, including stratified randomisation, matched pairs and cluster-randomised trials. Throughout, we provide practical guidance to help researchers ensure that their design-stage calculations remain valid under the inferential methods they plan to use.

Abstract Image

用实验数据进行随机化推理的功率和样本量计算的入门
本文回顾了随机实验中功率分析和样本量计算的问题,重点关注使用随机化测试对平均治疗效果进行推断的设置。虽然基于两样本t$ t$检验的标准公式在实践中被广泛使用,但我们表明,当直接应用于基于随机化的推理时,这些计算可能会产生误导性的结果——除非满足某些假设。我们证明,潜在结果方差的差异或不相等的群体规模可能扭曲随机化检验的行为,导致不正确的功率和有缺陷的样本量计算。然而,一个简单的调整——研究检验统计量——在大样本中恢复了随机化检验的有效性。这种调整允许研究人员安全地应用标准功率和样本量公式,即使使用随机化推理。我们将这些结果扩展到应用经济学中常用的一系列实验设计,包括分层随机化、配对配对和聚类随机化试验。在整个过程中,我们提供实用的指导,以帮助研究人员确保他们的设计阶段的计算在他们计划使用的推理方法下仍然有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fiscal Studies
Fiscal Studies Multiple-
CiteScore
13.50
自引率
1.40%
发文量
18
期刊介绍: The Institute for Fiscal Studies publishes the journal Fiscal Studies, which serves as a bridge between academic research and policy. This esteemed journal, established in 1979, has gained global recognition for its publication of high-quality and original research papers. The articles, authored by prominent academics, policymakers, and practitioners, are presented in an accessible format, ensuring a broad international readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信