{"title":"Instability of colloidal lead halide perovskite nanocrystals: Causes, improvement, and evaluation","authors":"Thi Kim Tran Tran, Hawi N. Nyiera, Jing Zhao","doi":"10.1007/s12274-024-6975-9","DOIUrl":null,"url":null,"abstract":"<div><p>The instability of colloidal lead halide perovskite nanocrystals (NCs) presents a significant challenge for their application in optoelectronic devices. This review examines the primary causes of instability in these NCs and the proposed mechanisms of degradation. It also introduces the recently developed synthesis and surface passivation methods to address the instability issue of colloidal perovskite NCs. Specifically, we focus on the various types of ligands and precursors introduced during NC synthesis or post-treatment and how they impact the structural and optical properties of the perovskite NCs. This review also proposes a systematic approach to evaluating stability enhancement strategies by establishing key parameters and ranking them based on working and processing conditions. Finally, we discuss the issues that need to be addressed in future research to achieve practical application of lead halide perovskite NCs in advanced optoelectronic systems.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 :","pages":"10607 - 10619"},"PeriodicalIF":9.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6975-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The instability of colloidal lead halide perovskite nanocrystals (NCs) presents a significant challenge for their application in optoelectronic devices. This review examines the primary causes of instability in these NCs and the proposed mechanisms of degradation. It also introduces the recently developed synthesis and surface passivation methods to address the instability issue of colloidal perovskite NCs. Specifically, we focus on the various types of ligands and precursors introduced during NC synthesis or post-treatment and how they impact the structural and optical properties of the perovskite NCs. This review also proposes a systematic approach to evaluating stability enhancement strategies by establishing key parameters and ranking them based on working and processing conditions. Finally, we discuss the issues that need to be addressed in future research to achieve practical application of lead halide perovskite NCs in advanced optoelectronic systems.
期刊介绍:
Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.