{"title":"Magnetic and luminescence properties of bioactive glass nanoparticles for biomedical applications","authors":"Fatma Unal, Batur Ercan","doi":"10.1007/s41779-024-01141-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the synthesis and characterization of superparamagnetic iron oxide nanoparticles (SPIONs) coated with zinc (Zn) and/or europium (Eu) doped bioactive glass. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) confirmed spherical agglomerated morphology and core@shell structure, respectively. High-Resolution TEM (HR-TEM) revealed lattice fringe values consistent with the cubic magnetite phase. Magnetic property assessment showed stable superparamagnetic behavior with slight reductions in saturation magnetization (σ<sub>s</sub>) after immersion in simulated body fluid (SBF) solution. Photoluminescence (PL) spectra of Eu-doped samples exhibited red emission, confirming Eu rare earth element incorporation and maintaining luminescence post-immersion in SBF. Upon the interaction with SBF, hydroxyapatite (HA) formation occurred on the nanoparticle surfaces, suggesting the bioactive nature of the nanoparticles. These findings suggest that the synthesized nanoparticles exhibit promising potential for biomedical applications, including imaging, and orthopedics, due to their bioactive, magnetic, and luminescent properties.</p></div>","PeriodicalId":673,"journal":{"name":"Journal of the Australian Ceramic Society","volume":"61 section","pages":"301 - 310"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s41779-024-01141-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the synthesis and characterization of superparamagnetic iron oxide nanoparticles (SPIONs) coated with zinc (Zn) and/or europium (Eu) doped bioactive glass. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) confirmed spherical agglomerated morphology and core@shell structure, respectively. High-Resolution TEM (HR-TEM) revealed lattice fringe values consistent with the cubic magnetite phase. Magnetic property assessment showed stable superparamagnetic behavior with slight reductions in saturation magnetization (σs) after immersion in simulated body fluid (SBF) solution. Photoluminescence (PL) spectra of Eu-doped samples exhibited red emission, confirming Eu rare earth element incorporation and maintaining luminescence post-immersion in SBF. Upon the interaction with SBF, hydroxyapatite (HA) formation occurred on the nanoparticle surfaces, suggesting the bioactive nature of the nanoparticles. These findings suggest that the synthesized nanoparticles exhibit promising potential for biomedical applications, including imaging, and orthopedics, due to their bioactive, magnetic, and luminescent properties.
期刊介绍:
Publishes high quality research and technical papers in all areas of ceramic and related materials
Spans the broad and growing fields of ceramic technology, material science and bioceramics
Chronicles new advances in ceramic materials, manufacturing processes and applications
Journal of the Australian Ceramic Society since 1965
Professional language editing service is available through our affiliates Nature Research Editing Service and American Journal Experts at the author''s cost and does not guarantee that the manuscript will be reviewed or accepted