S. N. Teplyakova, C. A. Lorenz, A. A. Kudryavtsev, P. A. Somov, S. E. Borisovskiy
{"title":"Unique Mineral Association and the First Finding of Extraterrestrial Ferrodimolybdenite in the Kunya-Urgench H5 Chondrite","authors":"S. N. Teplyakova, C. A. Lorenz, A. A. Kudryavtsev, P. A. Somov, S. E. Borisovskiy","doi":"10.1134/S0016702925600348","DOIUrl":null,"url":null,"abstract":"<p>The mineral ferrodimolybdenite (FeMo<sub>2</sub>S<sub>4</sub>) and the associated mineral assemblage were identified for the first time in an extraterrestrial environment: in a sulfide–metal veinlet of the Kunya-Urgench (H5) ordinary chondrite. They were studied using optical microscopy, SEM, EPMA, and EBSD. Ferrodimolybdenite was found as an inclusion in troilite in terrestrial pyrometamorphic rocks in 2023. Its synthetic analogue has been known as a semiconductor since 1960. Experimental data and properties of the natural mineral assemblage suggest that ferrodimolybdenite should have crystallized from troilite melt at a temperature close to 1100–1000°C. The quenching of metal–sulfide melt enriched in Mo, Cu, and Mn probably formed the metastable phase FeMo<sub>2</sub>S<sub>4</sub> in association with native copper, alabandite, and mercury sulfides. The presence of alabandite can indicate strongly reducing conditions (log <i>f</i>O<sub>2</sub> < –4 IW), which are atypical of the impact melting of ordinary chondrites. The fact that this phenomenon occurs locally suggests that a reducing agent may have been locally involved, which was probably a carbon phase contained in the groundmass of the chondrite or brought from the meteoroid that initiated the impact event with the formation of the veinlet. The anomalously high concentrations of Mo (2 × 10<sup>2</sup> CI), Mn, Cu, and Hg in the Fe–S melt could not have been reached either during the fractional crystallization of large volumes of Fe–FeS melt or during the recurrent partial melting of metal sulfide and silicates during impact events. The ferrodimolybdenite and associated mineral phases were most likely formed during the impact melting of an foreign sulfide–metal aggregate that had been formed under conditions different from those characteristic of the formation of the chondrite matrix in which carbonaceous chondrites were presumably formed. An alternative explanation is hydrothermal activity on the parent body of H chondrites. Although prerequisites for this activity have been identified, its <i>P–T</i> boundary parameters remain uncertain.</p>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"63 9","pages":"800 - 809"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry International","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016702925600348","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The mineral ferrodimolybdenite (FeMo2S4) and the associated mineral assemblage were identified for the first time in an extraterrestrial environment: in a sulfide–metal veinlet of the Kunya-Urgench (H5) ordinary chondrite. They were studied using optical microscopy, SEM, EPMA, and EBSD. Ferrodimolybdenite was found as an inclusion in troilite in terrestrial pyrometamorphic rocks in 2023. Its synthetic analogue has been known as a semiconductor since 1960. Experimental data and properties of the natural mineral assemblage suggest that ferrodimolybdenite should have crystallized from troilite melt at a temperature close to 1100–1000°C. The quenching of metal–sulfide melt enriched in Mo, Cu, and Mn probably formed the metastable phase FeMo2S4 in association with native copper, alabandite, and mercury sulfides. The presence of alabandite can indicate strongly reducing conditions (log fO2 < –4 IW), which are atypical of the impact melting of ordinary chondrites. The fact that this phenomenon occurs locally suggests that a reducing agent may have been locally involved, which was probably a carbon phase contained in the groundmass of the chondrite or brought from the meteoroid that initiated the impact event with the formation of the veinlet. The anomalously high concentrations of Mo (2 × 102 CI), Mn, Cu, and Hg in the Fe–S melt could not have been reached either during the fractional crystallization of large volumes of Fe–FeS melt or during the recurrent partial melting of metal sulfide and silicates during impact events. The ferrodimolybdenite and associated mineral phases were most likely formed during the impact melting of an foreign sulfide–metal aggregate that had been formed under conditions different from those characteristic of the formation of the chondrite matrix in which carbonaceous chondrites were presumably formed. An alternative explanation is hydrothermal activity on the parent body of H chondrites. Although prerequisites for this activity have been identified, its P–T boundary parameters remain uncertain.
期刊介绍:
Geochemistry International is a peer reviewed journal that publishes articles on cosmochemistry; geochemistry of magmatic, metamorphic, hydrothermal, and sedimentary processes; isotope geochemistry; organic geochemistry; applied geochemistry; and chemistry of the environment. Geochemistry International provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.