A. I. Zemlyanukhin, A. V. Bochkarev, V. I. Erofeev, I. S. Pavlov
{"title":"Nonlinear Periodic Waves in a Deformable Medium Modeled by Chains of Active Morse–van der Pol Particles","authors":"A. I. Zemlyanukhin, A. V. Bochkarev, V. I. Erofeev, I. S. Pavlov","doi":"10.1134/S1063771024602292","DOIUrl":null,"url":null,"abstract":"<p>The generation and propagation of nonlinear periodic waves in a deformable medium modeled by different chains of active Morse–van der Pol particles are studied by numerical modeling methods. The intervals of change in wave periods are determined within a broad range of chain lengths. It is shown that, in short chains, conservative Morse forces are much greater than spatially dependence active friction forces and, as a consequence, the wave process occurs according to a conservative scenario. In long chains, the transformation of a nonlinear periodic wave into a dissipative soliton with a minimum velocity corresponding to a maximum period value has been revealed. It has been established that the dependence of the minimum period on the number of particles in a chain is almost linear. Instability in the propagation of initial perturbations composed of several previously identified identical periodic solutions is demonstrated.</p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"71 1","pages":"1 - 10"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063771024602292","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The generation and propagation of nonlinear periodic waves in a deformable medium modeled by different chains of active Morse–van der Pol particles are studied by numerical modeling methods. The intervals of change in wave periods are determined within a broad range of chain lengths. It is shown that, in short chains, conservative Morse forces are much greater than spatially dependence active friction forces and, as a consequence, the wave process occurs according to a conservative scenario. In long chains, the transformation of a nonlinear periodic wave into a dissipative soliton with a minimum velocity corresponding to a maximum period value has been revealed. It has been established that the dependence of the minimum period on the number of particles in a chain is almost linear. Instability in the propagation of initial perturbations composed of several previously identified identical periodic solutions is demonstrated.
期刊介绍:
Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.