CsPbI2Br epitaxial shell for efficient PbS quantum dot solar cells

IF 9 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Sami Ur Rahman, Yong-Hui Song, Zhen-Yu Ma, Xiao-Lin Tai, Bai-Sheng Zhu, Yi-Chen Yin, Li-Zhe Feng, Jing-Ming Hao, Guan-Jie Ding, Kuang-Hui Song, Ya-Lan Hu, Tieqiang Li, Jixian Xu, Hong-Bin Yao
{"title":"CsPbI2Br epitaxial shell for efficient PbS quantum dot solar cells","authors":"Sami Ur Rahman,&nbsp;Yong-Hui Song,&nbsp;Zhen-Yu Ma,&nbsp;Xiao-Lin Tai,&nbsp;Bai-Sheng Zhu,&nbsp;Yi-Chen Yin,&nbsp;Li-Zhe Feng,&nbsp;Jing-Ming Hao,&nbsp;Guan-Jie Ding,&nbsp;Kuang-Hui Song,&nbsp;Ya-Lan Hu,&nbsp;Tieqiang Li,&nbsp;Jixian Xu,&nbsp;Hong-Bin Yao","doi":"10.1007/s12274-024-6988-4","DOIUrl":null,"url":null,"abstract":"<div><p>Lead sulfide quantum dots (PbS QDs) are promising candidates for high-performance solar cells due to their tunable bandgaps and low-cost solution processing. However, low carrier mobility and numerous surface defects restrict the performance of the fabricated solar cells. Herein, we report the synthesis of novel PbS-perovskite core-shell QDs to solve the low carrier mobility problem of PbS QDs via a facile hot injection method. CsPbI<sub>2</sub>Br shell enabled strain-free epitaxial growth on the surface of PbS QDs because of 98% lattice match. Our results demonstrate a significant improvement in the photoluminescence and stability of the synthesized PbS-CsPbI<sub>2</sub>Br QDs upon shell formation, attributed to the effective suppression of surface defects by the epitaxial shell of CsPbI<sub>2</sub>Br. As a result, the obtained solar cell based on PbS-CsPbI<sub>2</sub>Br core-shell QD exhibits a power conversion efficiency (PCE) of 8.43%, two times higher than that of pristine PbS QDs. Overall, the construction of PbS-CsPbI<sub>2</sub>Br core-shell structures represent a promising strategy for advancing the performance of PbS QDs-based optoelectronic devices.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 :","pages":"10302 - 10308"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6988-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lead sulfide quantum dots (PbS QDs) are promising candidates for high-performance solar cells due to their tunable bandgaps and low-cost solution processing. However, low carrier mobility and numerous surface defects restrict the performance of the fabricated solar cells. Herein, we report the synthesis of novel PbS-perovskite core-shell QDs to solve the low carrier mobility problem of PbS QDs via a facile hot injection method. CsPbI2Br shell enabled strain-free epitaxial growth on the surface of PbS QDs because of 98% lattice match. Our results demonstrate a significant improvement in the photoluminescence and stability of the synthesized PbS-CsPbI2Br QDs upon shell formation, attributed to the effective suppression of surface defects by the epitaxial shell of CsPbI2Br. As a result, the obtained solar cell based on PbS-CsPbI2Br core-shell QD exhibits a power conversion efficiency (PCE) of 8.43%, two times higher than that of pristine PbS QDs. Overall, the construction of PbS-CsPbI2Br core-shell structures represent a promising strategy for advancing the performance of PbS QDs-based optoelectronic devices.

高效PbS量子点太阳能电池用CsPbI2Br外延壳
硫化铅量子点(PbS QDs)由于其可调谐的带隙和低成本的溶液处理而成为高性能太阳能电池的有希望的候选者。然而,低载流子迁移率和大量的表面缺陷限制了制备的太阳能电池的性能。本文报道了一种新型PbS-钙钛矿核壳量子点的合成方法,以解决PbS量子点载流子迁移率低的问题。CsPbI2Br壳层在PbS量子点表面实现了98%的晶格匹配,实现了无应变外延生长。我们的研究结果表明,由于CsPbI2Br外延壳有效地抑制了表面缺陷,合成的bs -CsPbI2Br量子点在形成壳后的光致发光和稳定性有了显著改善。结果表明,所制备的基于PbS- cspbi2br核壳量子点的太阳能电池的功率转换效率(PCE)为8.43%,是原始PbS量子点的2倍。总体而言,构建PbS- cspbi2br核壳结构是提高基于PbS qds的光电器件性能的一种很有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信