{"title":"The Lorentzian Anti-de Sitter Plane","authors":"Anton Z. Ali, Yuri L. Sachkov","doi":"10.1134/S1560354725040045","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper the two-dimensional Lorentzian problem on the anti-de Sitter plane is studied. Using methods of geometric control theory and differential geometry, we describe the reachable set, investigate the existence of Lorentzian length maximizers, compute extremal trajectories, construct an optimal synthesis, characterize Lorentzian distance and spheres, and describe the Lie algebra of Killing vector fields.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"30 Editors:","pages":"504 - 537"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354725040045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper the two-dimensional Lorentzian problem on the anti-de Sitter plane is studied. Using methods of geometric control theory and differential geometry, we describe the reachable set, investigate the existence of Lorentzian length maximizers, compute extremal trajectories, construct an optimal synthesis, characterize Lorentzian distance and spheres, and describe the Lie algebra of Killing vector fields.
期刊介绍:
Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.