The Lorentzian Anti-de Sitter Plane

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Anton Z. Ali, Yuri L. Sachkov
{"title":"The Lorentzian Anti-de Sitter Plane","authors":"Anton Z. Ali,&nbsp;Yuri L. Sachkov","doi":"10.1134/S1560354725040045","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper the two-dimensional Lorentzian problem on the anti-de Sitter plane is studied. Using methods of geometric control theory and differential geometry, we describe the reachable set, investigate the existence of Lorentzian length maximizers, compute extremal trajectories, construct an optimal synthesis, characterize Lorentzian distance and spheres, and describe the Lie algebra of Killing vector fields.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"30 Editors:","pages":"504 - 537"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354725040045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper the two-dimensional Lorentzian problem on the anti-de Sitter plane is studied. Using methods of geometric control theory and differential geometry, we describe the reachable set, investigate the existence of Lorentzian length maximizers, compute extremal trajectories, construct an optimal synthesis, characterize Lorentzian distance and spheres, and describe the Lie algebra of Killing vector fields.

洛伦兹反德西特平面
本文研究了反德西特平面上的二维洛伦兹问题。利用几何控制理论和微分几何的方法,描述了可达集,研究了洛伦兹长度最大化器的存在性,计算了极值轨迹,构造了最优综合,表征了洛伦兹距离和球,描述了杀戮向量场的李代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信