Metric Geometry and Forced Oscillations in Mechanical Systems

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Ivan Yu. Polekhin
{"title":"Metric Geometry and Forced Oscillations in Mechanical Systems","authors":"Ivan Yu. Polekhin","doi":"10.1134/S1560354725040173","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the problem of existence of forced oscillations on a Riemannian manifold, the metric on which is defined by the kinetic energy of a mechanical system. Under the assumption that the generalized forces are periodic functions of time, we find periodic solutions of the same period. We present sufficient conditions for the existence of such solutions, which essentially depend on the behavior of geodesics on the corresponding Riemannian manifold.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"30 Editors:","pages":"732 - 741"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354725040173","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of existence of forced oscillations on a Riemannian manifold, the metric on which is defined by the kinetic energy of a mechanical system. Under the assumption that the generalized forces are periodic functions of time, we find periodic solutions of the same period. We present sufficient conditions for the existence of such solutions, which essentially depend on the behavior of geodesics on the corresponding Riemannian manifold.

机械系统中的度量几何和强迫振荡
考虑黎曼流形上存在强迫振荡的问题,黎曼流形上的度规由机械系统的动能定义。在假定广义力是时间的周期函数的前提下,我们找到了同周期的周期解。我们给出了这些解存在的充分条件,这些解本质上依赖于相应黎曼流形上测地线的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信