Singular KAM Theory for Convex Hamiltonian Systems

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Santiago Barbieri, Luca Biasco, Luigi Chierchia, Davide Zaccaria
{"title":"Singular KAM Theory for Convex Hamiltonian Systems","authors":"Santiago Barbieri,&nbsp;Luca Biasco,&nbsp;Luigi Chierchia,&nbsp;Davide Zaccaria","doi":"10.1134/S1560354725040057","DOIUrl":null,"url":null,"abstract":"<div><p>In this note, we briefly discuss how the singular KAM theory of [7] — which was worked out for the mechanical case <span>\\(\\frac{1}{2}|y|^{2}+\\varepsilon f(x)\\)</span> — can be extended to <i>convex</i> real-analytic\nnearly integrable Hamiltonian systems\nwith Hamiltonian in action-angle variables given by <span>\\(h(y)+\\varepsilon f(x)\\)</span> with <span>\\(h\\)</span> convex and\n<span>\\(f\\)</span> generic.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"30 Editors:","pages":"538 - 549"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354725040057","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this note, we briefly discuss how the singular KAM theory of [7] — which was worked out for the mechanical case \(\frac{1}{2}|y|^{2}+\varepsilon f(x)\) — can be extended to convex real-analytic nearly integrable Hamiltonian systems with Hamiltonian in action-angle variables given by \(h(y)+\varepsilon f(x)\) with \(h\) convex and \(f\) generic.

凸哈密顿系统的奇异KAM理论
在这篇笔记中,我们简要地讨论了如何将[7]的奇异KAM理论——它是在机械情况\(\frac{1}{2}|y|^{2}+\varepsilon f(x)\)下得到的——推广到具有作用角变量的哈密顿量的凸实-解析近可积哈密顿系统中,该哈密顿量由\(h(y)+\varepsilon f(x)\)给出,具有\(h\)凸和\(f\)一般。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信