Study and optimization of glycerol electro-oxidation on a Cu2O catalyst: experimental approach and modeling via response surface methodology based on box–behnken design

IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL
H. Hamitouche, H. Menasra, R. Hadjeb, R. Issaadi
{"title":"Study and optimization of glycerol electro-oxidation on a Cu2O catalyst: experimental approach and modeling via response surface methodology based on box–behnken design","authors":"H. Hamitouche,&nbsp;H. Menasra,&nbsp;R. Hadjeb,&nbsp;R. Issaadi","doi":"10.1007/s11144-025-02873-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the design and optimization of copper(I) oxide (Cu<sub>2</sub>O) thin films as electrocatalysts for glycerol electro-oxidation in alkaline environments. Cu<sub>2</sub>O films were synthesized via electrodeposition on copper substrates using a citric acid-based electrolyte, chosen for its low toxicity and complexing properties. The study systematically optimized key deposition parameters such as temperature (55–75 °C), stirring rate (0–300 r min<sup>−1</sup>), scan rate (10–100 mV s<sup>−1</sup>), and precursor concentration (0.05–0.07 mol L<sup>−1</sup>) using Response Surface Methodology (RSM) coupled with a Box-Behnken Design (BBD). The optimized conditions (75 °C, 300 r min<sup>−1</sup>, 55 mV s<sup>−1</sup>, 0.06 mol L<sup>−1</sup>) resulted in the formation of a homogeneous, adherent Cu₂O film with a thickness of 420.69 nm, predicted by a statistically validated quadratic model (R<sup>2</sup> = 0.9768). Structural analysis by X-ray diffraction (XRD) confirmed the formation of pure Cu<sub>2</sub>O in the cubic cuprite phase. Optical microscopy revealed a smooth and uniform surface, which is vital for electrocatalytic applications. Electrochemical testing showed that the Cu₂O film stabilized the open circuit potential at -0.1150 V vs. Ag/AgCl, indicating surface passivation. Cyclic voltammetry (CV) in an alkaline glycerol solution (0.5 mol L<sup>−1</sup>) exhibited two oxidation peaks at − 0.01 V and + 0.23 V vs. Ag/AgCl, confirming the electrocatalytic activity of the Cu₂O film. Chronoamperometric measurements at + 0.2 V vs. Ag/AgCl for 40 min revealed a stable current density (~ 2.41 mA) for the thicker film, indicating improved electrocatalytic performance due to a larger electroactive surface area. These results demonstrate that Cu<sub>2</sub>O thin films, synthesized under optimized conditions, exhibit promising catalytic activity for glycerol electro-oxidation, offering an alternative to noble metal-based catalysts.</p></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"138 5","pages":"2791 - 2808"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11144-025-02873-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the design and optimization of copper(I) oxide (Cu2O) thin films as electrocatalysts for glycerol electro-oxidation in alkaline environments. Cu2O films were synthesized via electrodeposition on copper substrates using a citric acid-based electrolyte, chosen for its low toxicity and complexing properties. The study systematically optimized key deposition parameters such as temperature (55–75 °C), stirring rate (0–300 r min−1), scan rate (10–100 mV s−1), and precursor concentration (0.05–0.07 mol L−1) using Response Surface Methodology (RSM) coupled with a Box-Behnken Design (BBD). The optimized conditions (75 °C, 300 r min−1, 55 mV s−1, 0.06 mol L−1) resulted in the formation of a homogeneous, adherent Cu₂O film with a thickness of 420.69 nm, predicted by a statistically validated quadratic model (R2 = 0.9768). Structural analysis by X-ray diffraction (XRD) confirmed the formation of pure Cu2O in the cubic cuprite phase. Optical microscopy revealed a smooth and uniform surface, which is vital for electrocatalytic applications. Electrochemical testing showed that the Cu₂O film stabilized the open circuit potential at -0.1150 V vs. Ag/AgCl, indicating surface passivation. Cyclic voltammetry (CV) in an alkaline glycerol solution (0.5 mol L−1) exhibited two oxidation peaks at − 0.01 V and + 0.23 V vs. Ag/AgCl, confirming the electrocatalytic activity of the Cu₂O film. Chronoamperometric measurements at + 0.2 V vs. Ag/AgCl for 40 min revealed a stable current density (~ 2.41 mA) for the thicker film, indicating improved electrocatalytic performance due to a larger electroactive surface area. These results demonstrate that Cu2O thin films, synthesized under optimized conditions, exhibit promising catalytic activity for glycerol electro-oxidation, offering an alternative to noble metal-based catalysts.

Cu2O催化剂上甘油电氧化的研究与优化:基于盒本肯设计响应面法的实验方法与建模
本文研究了在碱性环境下,氧化铜(Cu2O)薄膜作为甘油电氧化电催化剂的设计与优化。采用低毒性和络合性能的柠檬酸电解质,在铜衬底上电沉积Cu2O薄膜。利用响应面法(RSM)和Box-Behnken设计(BBD),系统优化了温度(55 ~ 75℃)、搅拌速率(0 ~ 300 r min−1)、扫描速率(10 ~ 100 mV s−1)和前驱体浓度(0.05 ~ 0.07 mol L−1)等关键沉积参数。在75°C, 300 r min−1,55 mV s−1,0.06 mol L−1的优化条件下,Cu₂O膜的厚度为420.69 nm,通过二次模型(R2 = 0.9768)进行了预测。x射线衍射(XRD)结构分析证实在立方铜相中形成了纯Cu2O。光学显微镜显示其表面光滑均匀,这对电催化应用至关重要。电化学测试表明,Cu₂O膜对Ag/AgCl的开路电位稳定在-0.1150 V,表明表面钝化。在碱性甘油溶液(0.5 mol L−1)中,循环伏安法(CV)对Ag/AgCl在−0.01 V和+ 0.23 V处显示出两个氧化峰,证实了Cu₂O膜的电催化活性。在+ 0.2 V vs. Ag/AgCl作用40分钟时安培测量显示,较厚的膜具有稳定的电流密度(~ 2.41 mA),表明由于电活性表面积较大,电催化性能得到了提高。这些结果表明,在优化条件下合成的Cu2O薄膜对甘油电氧化具有良好的催化活性,为贵金属基催化剂提供了替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
201
审稿时长
2.8 months
期刊介绍: Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields: -kinetics of homogeneous reactions in gas, liquid and solid phase; -Homogeneous catalysis; -Heterogeneous catalysis; -Adsorption in heterogeneous catalysis; -Transport processes related to reaction kinetics and catalysis; -Preparation and study of catalysts; -Reactors and apparatus. Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信