A core–shell heterostructured nickel manganese layered double hydroxide@ZnCo2O4 nanocomposite electrode for enhanced asymmetric supercapacitor applications

IF 4.1 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Desta M. Ulisso, Pooja K. Bhoj, Sanjay S. Kolekar, Jaeyeong Heo and Anil Vithal Ghule
{"title":"A core–shell heterostructured nickel manganese layered double hydroxide@ZnCo2O4 nanocomposite electrode for enhanced asymmetric supercapacitor applications","authors":"Desta M. Ulisso, Pooja K. Bhoj, Sanjay S. Kolekar, Jaeyeong Heo and Anil Vithal Ghule","doi":"10.1039/D5SE00863H","DOIUrl":null,"url":null,"abstract":"<p >Designing hierarchically core–shell heterostructured nanocomposite electrode materials with more active sites and delivering enhanced electrochemical performances for supercapacitors is pursued with great interest. With this motivation, herein, we report a facile two-step reflux condensation method for developing heterostructured core–shell nickel manganese layered double hydroxide nanosheets@ZnCo<small><sub>2</sub></small>O<small><sub>4</sub></small> on a flexible stainless steel mesh substrate (NM-LDH@ZCO/SSM) as a nanocomposite electrode. The ZnCo<small><sub>2</sub></small>O<small><sub>4</sub></small> nanorods/SSM core structure (ZCO/SSM) facilitates the deposition of the NiMn-LDH shell structure (NM-LDH), forming a core–shell NM-LDH@ZCO/SSM nanocomposite electrode. The structural and morphological characterization studies were done using XRD, FT-IR, FE-SEM, EDAX, XPS, and TEM to confirm the synthesis of the nanocomposite electrode. The NM-LDH@ZCO/SSM nanocomposite demonstrated an ultrahigh specific capacitance of 3169.14 F g<small><sup>−1</sup></small> at 10 mA cm<small><sup>−2</sup></small> with a capacitance retention (CR) of 89.3% after 3000 galvanometric charging–discharging (GCD) cycles at a higher current density (CD) of 55 mA cm<small><sup>−2</sup></small>. An asymmetric supercapacitor device fabricated by using the NM-LDH@ZCO/SSM nanocomposite as the cathode and activated carbon (AC/SSM) as the anode exhibited an energy density of 58.7 Wh kg<small><sup>−1</sup></small> at 2492 W kg<small><sup>−1</sup></small>, and 91% CR after 5000 GCD cycles at 25 mA cm<small><sup>−2</sup></small>. The results reveal that the NM-LDH@ZCO/SSM nanocomposite is one of the potential candidates for high-performance supercapacitors and is expected to pave the way for its future exploration in energy storage devices.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 19","pages":" 5354-5366"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00863h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Designing hierarchically core–shell heterostructured nanocomposite electrode materials with more active sites and delivering enhanced electrochemical performances for supercapacitors is pursued with great interest. With this motivation, herein, we report a facile two-step reflux condensation method for developing heterostructured core–shell nickel manganese layered double hydroxide nanosheets@ZnCo2O4 on a flexible stainless steel mesh substrate (NM-LDH@ZCO/SSM) as a nanocomposite electrode. The ZnCo2O4 nanorods/SSM core structure (ZCO/SSM) facilitates the deposition of the NiMn-LDH shell structure (NM-LDH), forming a core–shell NM-LDH@ZCO/SSM nanocomposite electrode. The structural and morphological characterization studies were done using XRD, FT-IR, FE-SEM, EDAX, XPS, and TEM to confirm the synthesis of the nanocomposite electrode. The NM-LDH@ZCO/SSM nanocomposite demonstrated an ultrahigh specific capacitance of 3169.14 F g−1 at 10 mA cm−2 with a capacitance retention (CR) of 89.3% after 3000 galvanometric charging–discharging (GCD) cycles at a higher current density (CD) of 55 mA cm−2. An asymmetric supercapacitor device fabricated by using the NM-LDH@ZCO/SSM nanocomposite as the cathode and activated carbon (AC/SSM) as the anode exhibited an energy density of 58.7 Wh kg−1 at 2492 W kg−1, and 91% CR after 5000 GCD cycles at 25 mA cm−2. The results reveal that the NM-LDH@ZCO/SSM nanocomposite is one of the potential candidates for high-performance supercapacitors and is expected to pave the way for its future exploration in energy storage devices.

Abstract Image

核壳异质结构镍锰层状双层hydroxide@ZnCo2O4纳米复合电极增强非对称超级电容器应用
设计具有更多活性位点的分层核壳异质结构纳米复合电极材料,提高超级电容器的电化学性能是人们关注的焦点。基于这一动机,本文报告了一种简单的两步回流冷凝方法,用于在柔性不锈钢网基板(NM-LDH@ZCO/SSM)上制备异质结构核壳镍锰层状双氢氧化物nanosheets@ZnCo2O4作为纳米复合电极。ZnCo2O4纳米棒/SSM核心结构(ZCO/SSM)促进了NiMn-LDH壳结构(NM-LDH)的沉积,形成了核-壳NM-LDH@ZCO/SSM纳米复合电极。采用XRD、FT-IR、FE-SEM、EDAX、XPS、TEM等手段对纳米复合电极的结构和形态进行了表征。NM-LDH@ZCO/SSM纳米复合材料在10 mA cm−2下具有3169.14 F g−1的超高比电容,在55 mA cm−2的高电流密度(CD)下,经过3000次恒流充放电(GCD)循环后,电容保持率(CR)为89.3%。以NM-LDH@ZCO/SSM纳米复合材料为阴极,活性炭(AC/SSM)为阳极制备的非对称超级电容器在2492 W kg - 1下的能量密度为58.7 Wh kg - 1,在25 mA cm - 2下5000 GCD循环后的CR为91%。结果表明,NM-LDH@ZCO/SSM纳米复合材料是高性能超级电容器的潜在候选材料之一,有望为其未来在储能器件中的探索铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信