A bound-preserving scheme for the Allen–Cahn equation

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Zhaonan Dong , Alexandre Ern , Zuodong Wang
{"title":"A bound-preserving scheme for the Allen–Cahn equation","authors":"Zhaonan Dong ,&nbsp;Alexandre Ern ,&nbsp;Zuodong Wang","doi":"10.1016/j.camwa.2025.09.025","DOIUrl":null,"url":null,"abstract":"<div><div>We propose and analyze a bound-preserving scheme for the Allen–Cahn equation. The key idea is to apply a bound-preserving nonlinear stabilization technique to the implicit Euler time-stepping method coupled with the continuous finite element method. To our best knowledge, this is the first scheme which theoretically preserves the maximum principle and has an error estimate that is optimal in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></math></span>-seminorm and with a polynomial dependence on <span><math><msup><mrow><mi>ϵ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> at the same time. The proof of the error estimate combines a nonlinear Ritz projection together with a special Grönwall inequality. Numerical experiments are conducted to compare the performance of our scheme with a bound-preserving operator-splitting scheme.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"199 ","pages":"Pages 225-241"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125004067","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose and analyze a bound-preserving scheme for the Allen–Cahn equation. The key idea is to apply a bound-preserving nonlinear stabilization technique to the implicit Euler time-stepping method coupled with the continuous finite element method. To our best knowledge, this is the first scheme which theoretically preserves the maximum principle and has an error estimate that is optimal in the L2(H1)-seminorm and with a polynomial dependence on ϵ1 at the same time. The proof of the error estimate combines a nonlinear Ritz projection together with a special Grönwall inequality. Numerical experiments are conducted to compare the performance of our scheme with a bound-preserving operator-splitting scheme.
Allen-Cahn方程的保界格式
提出并分析了Allen-Cahn方程的保界格式。其核心思想是将保界非线性镇定技术应用于隐式欧拉时间步进法与连续有限元法的耦合。据我们所知,这是第一个在理论上保留最大原则的方案,并且在L2(H1)半正态中具有最优的误差估计,同时具有对λ−1的多项式依赖。误差估计的证明结合了一个非线性里兹投影和一个特殊的Grönwall不等式。通过数值实验比较了该方案与保界算子分裂方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信