Yuhua Liu , Haoxuan Wang , Jiajia Kou , Ling Sun , Heyu Wang , Yongheng Wang , Yigang Wang , Jinchang Li , Zhiguang Zhou
{"title":"A unified framework for interactive visual graph matching via attribute-structure synchronization","authors":"Yuhua Liu , Haoxuan Wang , Jiajia Kou , Ling Sun , Heyu Wang , Yongheng Wang , Yigang Wang , Jinchang Li , Zhiguang Zhou","doi":"10.1016/j.cag.2025.104406","DOIUrl":null,"url":null,"abstract":"<div><div>In traditional graph retrieval tools, graph matching is commonly used to retrieve desired graphs from extensive graph datasets according to their structural similarities. However, in real applications, graph nodes have numerous attributes which also contain valuable information for evaluating similarities between graphs. Thus, to achieve superior graph matching results, it is crucial for graph retrieval tools to make full use of the attribute information in addition to structural information. We propose a novel framework for interactive visual graph matching. In the proposed framework, an attribute-structure synchronization method is developed for representing structural and attribute features in a unified embedding space based on Canonical Correlation Analysis (CCA). To support fast and interactive matching, our method provides users with intuitive visual query interfaces for traversing, filtering and searching for the target graph in the embedding space conveniently. With the designed interfaces, the users can also specify a new target graph with desired structural and semantic features. Besides, evaluation views are designed for easy validation and interpretation of the matching results. Case studies and quantitative comparisons on real-world datasets have demonstrated the superiorities of our proposed framework in graph matching and large graph exploration.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"133 ","pages":"Article 104406"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009784932500247X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In traditional graph retrieval tools, graph matching is commonly used to retrieve desired graphs from extensive graph datasets according to their structural similarities. However, in real applications, graph nodes have numerous attributes which also contain valuable information for evaluating similarities between graphs. Thus, to achieve superior graph matching results, it is crucial for graph retrieval tools to make full use of the attribute information in addition to structural information. We propose a novel framework for interactive visual graph matching. In the proposed framework, an attribute-structure synchronization method is developed for representing structural and attribute features in a unified embedding space based on Canonical Correlation Analysis (CCA). To support fast and interactive matching, our method provides users with intuitive visual query interfaces for traversing, filtering and searching for the target graph in the embedding space conveniently. With the designed interfaces, the users can also specify a new target graph with desired structural and semantic features. Besides, evaluation views are designed for easy validation and interpretation of the matching results. Case studies and quantitative comparisons on real-world datasets have demonstrated the superiorities of our proposed framework in graph matching and large graph exploration.
期刊介绍:
Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on:
1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains.
2. State-of-the-art papers on late-breaking, cutting-edge research on CG.
3. Information on innovative uses of graphics principles and technologies.
4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.