Engineering of electrospun lead-free PVDF/Carbon Nanofiber-ZnO nanocomposites for enhanced piezoelectric energy harvesting and wearable sensing applications
{"title":"Engineering of electrospun lead-free PVDF/Carbon Nanofiber-ZnO nanocomposites for enhanced piezoelectric energy harvesting and wearable sensing applications","authors":"Divya Chauhan , Arpit Kumar Singh , Sabatini Tyagi , Palani Iyamperumal Anand , Seeram Ramakrishna , Manish Kumar Srivastava","doi":"10.1016/j.compositesb.2025.113039","DOIUrl":null,"url":null,"abstract":"<div><div>Poly (vinylidene fluoride) (PVDF) is a promising lead-free piezoelectric polymer; however, its low β-phase fraction and limited charge transport hinder device performance. Here, we report a dual-filler strategy that synergistically integrates surface-functionalized carbon nanofibers (CNFs) and zinc oxide (ZnO) nanorods into electrospun PVDF fibers to simultaneously enhance β-phase nucleation, dipole alignment, and charge mobility. CNFs, at an optimized loading of 0.1 wt%, form conductive stress-transfer networks, while ZnO nanorods (1.5 wt%) with polar wurtzite facets act as efficient nucleating agents, promoting α→β phase transformation through localized electrostatic fields. Systematic variation of filler concentrations revealed that the 0.1 % CNF +1.5 % ZnO composition achieved the highest β-phase content (85.6 %) and piezoelectric coefficient (d<sub>33</sub> = 36 pC/N), yielding an open-circuit voltage of 80 V and power density of 20 mW/cm<sup>3</sup> under periodic tapping. The composite nanogenerator demonstrated stable, high-sensitivity performance in wearable sensing applications, including human joint motion monitoring. This work addresses the longstanding challenge of balancing mechanical flexibility with high piezoelectric activity in PVDF-based nanogenerators and establishes a scalable, lead-free approach for high-performance energy harvesting and self-powered sensing devices.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"309 ","pages":"Article 113039"},"PeriodicalIF":14.2000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825009503","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Poly (vinylidene fluoride) (PVDF) is a promising lead-free piezoelectric polymer; however, its low β-phase fraction and limited charge transport hinder device performance. Here, we report a dual-filler strategy that synergistically integrates surface-functionalized carbon nanofibers (CNFs) and zinc oxide (ZnO) nanorods into electrospun PVDF fibers to simultaneously enhance β-phase nucleation, dipole alignment, and charge mobility. CNFs, at an optimized loading of 0.1 wt%, form conductive stress-transfer networks, while ZnO nanorods (1.5 wt%) with polar wurtzite facets act as efficient nucleating agents, promoting α→β phase transformation through localized electrostatic fields. Systematic variation of filler concentrations revealed that the 0.1 % CNF +1.5 % ZnO composition achieved the highest β-phase content (85.6 %) and piezoelectric coefficient (d33 = 36 pC/N), yielding an open-circuit voltage of 80 V and power density of 20 mW/cm3 under periodic tapping. The composite nanogenerator demonstrated stable, high-sensitivity performance in wearable sensing applications, including human joint motion monitoring. This work addresses the longstanding challenge of balancing mechanical flexibility with high piezoelectric activity in PVDF-based nanogenerators and establishes a scalable, lead-free approach for high-performance energy harvesting and self-powered sensing devices.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.