Assessing the effect of primary air conditions on flame temperature zones during stacked biomass combustion using novel computer vision method

IF 5.8 2区 生物学 Q1 AGRICULTURAL ENGINEERING
Akash Borthakur , Biswajit Gogoi
{"title":"Assessing the effect of primary air conditions on flame temperature zones during stacked biomass combustion using novel computer vision method","authors":"Akash Borthakur ,&nbsp;Biswajit Gogoi","doi":"10.1016/j.biombioe.2025.108420","DOIUrl":null,"url":null,"abstract":"<div><div>The flame formation is an indicative parameter during combustion and is used with imaging techniques to collect the parametric flame characteristics. Image processing and advanced imaging techniques have improved the flame data extraction and utilization. Flames, being a multi-temperature formation, affect the target load at different heat transfer rates, corresponding to different flame temperature regions. The multi-temperature zones of flame could never be assessed only through imaging techniques. Therefore, the present study presents a novel method of integrating computer vision with thermal imaging to deduce the variation in the in-situ flame area with changes in temperature within the flame. The technique has been depicted using Python and verified through multi-experimental studies with changes in primary air conditions for highly dynamic stacked biomass combustion. During natural draft (ND), forced draft (FD) and forced draft with pre-heated air (AFD) combustion, burn rates of 0.14 g/s, 0.22 g/s and 0.23 g/s, respectively, were obtained. Flame regions corresponding to 200–300 °C occupy the highest flame area of 2.23 × 10<sup>−2</sup> m<sup>2</sup> (300 s), 2.21 × 10<sup>−2</sup> m<sup>2</sup> (300 s) and 2.62 × 10<sup>−2</sup> m<sup>2</sup> (600 s) during ND, FD and AFD, respectively. Although cumulative flame area under ND remains highest (1.88 × 10<sup>−1</sup> m<sup>2</sup>), flame area during AFD condition has the highest peaks of 2.62 × 10<sup>−2</sup> m<sup>2</sup>, 2.28 × 10<sup>−2</sup> m<sup>2</sup>, 1.09 × 10<sup>−2</sup> m<sup>2</sup>, 6.97 × 10<sup>−3</sup> m<sup>2</sup>, 5.01 × 10<sup>−3</sup> m<sup>2</sup>, 3.71 × 10<sup>−3</sup> m<sup>2</sup>, 1.36 × 10<sup>−4</sup> m<sup>2</sup> and 3.60 × 10<sup>−7</sup> m<sup>2</sup> corresponding to 200–300 °C, 301–400 °C, 401–500 °C, 501–600 °C, 601–700 °C, 701–800 °C, 801–900 °C and 901–1000 °C respectively. For all cases, the flame area decreases with increased flame temperature, and high-temperature zones remain closer to the combusting particles.</div></div>","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"204 ","pages":"Article 108420"},"PeriodicalIF":5.8000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0961953425008311","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The flame formation is an indicative parameter during combustion and is used with imaging techniques to collect the parametric flame characteristics. Image processing and advanced imaging techniques have improved the flame data extraction and utilization. Flames, being a multi-temperature formation, affect the target load at different heat transfer rates, corresponding to different flame temperature regions. The multi-temperature zones of flame could never be assessed only through imaging techniques. Therefore, the present study presents a novel method of integrating computer vision with thermal imaging to deduce the variation in the in-situ flame area with changes in temperature within the flame. The technique has been depicted using Python and verified through multi-experimental studies with changes in primary air conditions for highly dynamic stacked biomass combustion. During natural draft (ND), forced draft (FD) and forced draft with pre-heated air (AFD) combustion, burn rates of 0.14 g/s, 0.22 g/s and 0.23 g/s, respectively, were obtained. Flame regions corresponding to 200–300 °C occupy the highest flame area of 2.23 × 10−2 m2 (300 s), 2.21 × 10−2 m2 (300 s) and 2.62 × 10−2 m2 (600 s) during ND, FD and AFD, respectively. Although cumulative flame area under ND remains highest (1.88 × 10−1 m2), flame area during AFD condition has the highest peaks of 2.62 × 10−2 m2, 2.28 × 10−2 m2, 1.09 × 10−2 m2, 6.97 × 10−3 m2, 5.01 × 10−3 m2, 3.71 × 10−3 m2, 1.36 × 10−4 m2 and 3.60 × 10−7 m2 corresponding to 200–300 °C, 301–400 °C, 401–500 °C, 501–600 °C, 601–700 °C, 701–800 °C, 801–900 °C and 901–1000 °C respectively. For all cases, the flame area decreases with increased flame temperature, and high-temperature zones remain closer to the combusting particles.
基于计算机视觉的生物质燃烧层叠过程中一次空气条件对火焰温度区的影响研究
火焰形成是燃烧过程中的指示参数,并与成像技术一起用于收集参数火焰特性。图像处理和先进的成像技术提高了火焰数据的提取和利用。火焰作为一种多温度形态,在不同的传热速率下影响目标载荷,对应不同的火焰温度区域。火焰的多温区永远不能仅仅通过成像技术来评估。因此,本研究提出了一种将计算机视觉与热成像相结合的新方法,以推断原位火焰面积随火焰内温度变化的变化。该技术已使用Python进行了描述,并通过多次实验研究验证了高动态堆叠生物质燃烧的一次空气条件变化。在自然通风(ND)、强制通风(FD)和强制通风(AFD)燃烧时,燃烧速率分别为0.14 g/s、0.22 g/s和0.23 g/s。在ND、FD和AFD过程中,200 ~ 300℃对应的火焰区域火焰面积最大,分别为2.23 × 10−2 m2 (300 s)、2.21 × 10−2 m2 (300 s)和2.62 × 10−2 m2 (600 s)。虽然ND条件下的累积火焰面积最大(1.88 × 10−1 m2),但AFD条件下的火焰面积峰值分别为2.62 × 10−2 m2、2.28 × 10−2 m2、1.09 × 10−2 m2、6.97 × 10−3 m2、5.01 × 10−3 m2、3.71 × 10−3 m2、1.36 × 10−4 m2和3.60 × 10−7 m2,对应于200-300℃、301-400℃、401-500℃、501-600℃、601-700℃、701-800℃、801-900℃和901-1000℃。在所有情况下,火焰面积随着火焰温度的升高而减小,高温区离燃烧颗粒更近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomass & Bioenergy
Biomass & Bioenergy 工程技术-能源与燃料
CiteScore
11.50
自引率
3.30%
发文量
258
审稿时长
60 days
期刊介绍: Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials. The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy. Key areas covered by the journal: • Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation. • Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal. • Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes • Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation • Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信