Advanced Cu–MXene composite catalyst for photocatalytic antibiotic removal in wastewater

IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Mohammad Sadegh Jafari Zadegan , Milad Mohammadi , Samaneh Ghaedi , Roya Moosaei , Keyvan Moradi , Shima Sayyahi , Hamid Rajabi , John Bridgeman , Samad Sabbaghi
{"title":"Advanced Cu–MXene composite catalyst for photocatalytic antibiotic removal in wastewater","authors":"Mohammad Sadegh Jafari Zadegan ,&nbsp;Milad Mohammadi ,&nbsp;Samaneh Ghaedi ,&nbsp;Roya Moosaei ,&nbsp;Keyvan Moradi ,&nbsp;Shima Sayyahi ,&nbsp;Hamid Rajabi ,&nbsp;John Bridgeman ,&nbsp;Samad Sabbaghi","doi":"10.1016/j.chemosphere.2025.144704","DOIUrl":null,"url":null,"abstract":"<div><div>Antibiotic contamination in wastewaters poses severe risks to public health and ecosystems. However, remediation using common treatment methods is inefficient, necessitating the development of advanced remediation strategies. This study introduces a novel Cu–Cu<sub>2</sub>O-rGO/Ti<sub>3</sub>C<sub>2</sub> MXene (CGTM) nanocomposite photocatalyst, designed for the efficient degradation of tetracycline (TC), a representative antibiotic commonly found in wastewater, under visible light irradiation. The synergistic integration of Cu<sub>2</sub>O and MXene developed charge separation, suppressed electron-hole recombination, and enhanced photocatalytic efficiency. The CGTM photocatalyst was synthesised via a sonochemical approach and characterised systematically using XRD, SEM, EDS, TGA, FTIR, BET, and zeta potential analyses. Optimisation via Response Surface Methodology (RSM) and Central Composite Design (CCD) achieved a noteworthy TC degradation efficiency of 95 % under optimal conditions, viz. 0.47 g/L catalyst dosage, 48 ppm TC concentration, 50 min irradiation, and pH 5.15. The photocatalyst retained 85 % efficiency after five cycles, confirming material stability and reusability. Mechanistic investigations identified hydroxyl radicals and holes as primary reactive species, with kinetic modelling demonstrating first-order degradation behaviour, confirming effective radical-driven photocatalysis. Practical assessments showed high performance at reduced catalyst dosages, enhancing economic feasibility. These findings confirm the formulated CGTM as a scalable, eco-friendly solution for mitigating antibiotic pollution in wastewater, addressing global environmental challenges.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"388 ","pages":"Article 144704"},"PeriodicalIF":8.1000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653525006526","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Antibiotic contamination in wastewaters poses severe risks to public health and ecosystems. However, remediation using common treatment methods is inefficient, necessitating the development of advanced remediation strategies. This study introduces a novel Cu–Cu2O-rGO/Ti3C2 MXene (CGTM) nanocomposite photocatalyst, designed for the efficient degradation of tetracycline (TC), a representative antibiotic commonly found in wastewater, under visible light irradiation. The synergistic integration of Cu2O and MXene developed charge separation, suppressed electron-hole recombination, and enhanced photocatalytic efficiency. The CGTM photocatalyst was synthesised via a sonochemical approach and characterised systematically using XRD, SEM, EDS, TGA, FTIR, BET, and zeta potential analyses. Optimisation via Response Surface Methodology (RSM) and Central Composite Design (CCD) achieved a noteworthy TC degradation efficiency of 95 % under optimal conditions, viz. 0.47 g/L catalyst dosage, 48 ppm TC concentration, 50 min irradiation, and pH 5.15. The photocatalyst retained 85 % efficiency after five cycles, confirming material stability and reusability. Mechanistic investigations identified hydroxyl radicals and holes as primary reactive species, with kinetic modelling demonstrating first-order degradation behaviour, confirming effective radical-driven photocatalysis. Practical assessments showed high performance at reduced catalyst dosages, enhancing economic feasibility. These findings confirm the formulated CGTM as a scalable, eco-friendly solution for mitigating antibiotic pollution in wastewater, addressing global environmental challenges.

Abstract Image

新型Cu-MXene复合催化剂光催化脱除废水中的抗生素
废水中的抗生素污染对公共卫生和生态系统构成严重风险。然而,使用普通的处理方法进行修复是低效的,需要开发先进的修复策略。本研究介绍了一种新型cu - cu20 - rgo /Ti3C2 MXene (CGTM)纳米复合光催化剂,用于在可见光照射下高效降解废水中常见的代表性抗生素四环素(TC)。Cu2O与MXene的协同集成促进了电荷分离,抑制了电子-空穴复合,提高了光催化效率。通过声化学方法合成了CGTM光催化剂,并使用XRD, SEM, EDS, TGA, FTIR, BET和zeta电位分析对其进行了系统的表征。通过响应面法(RSM)和中心复合设计(CCD)进行优化,在催化剂用量为0.47 g/L, TC浓度为48 ppm,照射时间为50 min, pH为5.15的最佳条件下,TC降解效率达到95%。经过5次循环后,光催化剂的效率保持在85%,证实了材料的稳定性和可重复使用性。机理研究发现羟基自由基和空穴是主要的反应物质,动力学模型显示了一级降解行为,证实了有效的自由基驱动光催化。实际评估表明,在减少催化剂用量的情况下,性能良好,提高了经济可行性。这些发现证实,配制的CGTM是一种可扩展的、环保的解决方案,可减轻废水中的抗生素污染,应对全球环境挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemosphere
Chemosphere 环境科学-环境科学
CiteScore
15.80
自引率
8.00%
发文量
4975
审稿时长
3.4 months
期刊介绍: Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信