Reaction time-driven structural and electrochemical analysis of MnFe2O4 for solid-state supercapacitor application

IF 7.9 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Priyanka P. Chavan , Rahul S. Redekar , Umesh D. Babar , Ashok D. Chougale , N.L. Tarwal , Pradip D. Kamble
{"title":"Reaction time-driven structural and electrochemical analysis of MnFe2O4 for solid-state supercapacitor application","authors":"Priyanka P. Chavan ,&nbsp;Rahul S. Redekar ,&nbsp;Umesh D. Babar ,&nbsp;Ashok D. Chougale ,&nbsp;N.L. Tarwal ,&nbsp;Pradip D. Kamble","doi":"10.1016/j.jpowsour.2025.238459","DOIUrl":null,"url":null,"abstract":"<div><div>This study synthesizes manganese ferrite (MF) using a low-cost hydrothermal method. During synthesis, hydrothermal reaction time is varied to monitor the morphological changes and their effects on electrochemical performance. Morphological study demonstrates that ions are effectively transported via strongly interconnected nanostructures. The MF electrodes undergo electrochemical characterizations using different techniques. The MF24 electrode shows a specific capacitance of 603.68 F/g at 2 mA/cm<sup>2</sup> under optimized conditions. To comprehend the dynamics of charge storage for the MF24 electrode, the electrochemical kinetics are evaluated, which show the dominance of diffusion contribution. The MF24 electrode shows an 89.91 % capacitance retention after 5000 cycles. Furthermore, a solid-state symmetric supercapacitor device (SSD) with a potential window of 1 V is tested. At 20 mA/cm<sup>2</sup>, the MF24//MF24 SSD device demonstrates an energy density and power density of 10.16 Wh/kg and 2439.02 W/kg. The results indicate that including this synergy of metal ferrite can enhance the performance of supercapacitors.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"659 ","pages":"Article 238459"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325022955","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study synthesizes manganese ferrite (MF) using a low-cost hydrothermal method. During synthesis, hydrothermal reaction time is varied to monitor the morphological changes and their effects on electrochemical performance. Morphological study demonstrates that ions are effectively transported via strongly interconnected nanostructures. The MF electrodes undergo electrochemical characterizations using different techniques. The MF24 electrode shows a specific capacitance of 603.68 F/g at 2 mA/cm2 under optimized conditions. To comprehend the dynamics of charge storage for the MF24 electrode, the electrochemical kinetics are evaluated, which show the dominance of diffusion contribution. The MF24 electrode shows an 89.91 % capacitance retention after 5000 cycles. Furthermore, a solid-state symmetric supercapacitor device (SSD) with a potential window of 1 V is tested. At 20 mA/cm2, the MF24//MF24 SSD device demonstrates an energy density and power density of 10.16 Wh/kg and 2439.02 W/kg. The results indicate that including this synergy of metal ferrite can enhance the performance of supercapacitors.
固态超级电容器用MnFe2O4反应时间驱动结构及电化学分析
本研究采用低成本水热法合成铁酸锰。在合成过程中,通过改变水热反应时间来监测其形态变化及其对电化学性能的影响。形态学研究表明,离子通过强互连的纳米结构有效地传输。使用不同的技术对MF电极进行电化学表征。在优化条件下,MF24电极在2 mA/cm2下的比电容为603.68 F/g。为了更好地理解MF24电极的电荷存储动力学,对其电化学动力学进行了评估,结果表明扩散贡献占主导地位。MF24电极在5000次循环后的电容保持率为89.91%。此外,还测试了具有1 V电位窗口的固态对称超级电容器器件(SSD)。在20 mA/cm2时,MF24//MF24 SSD器件的能量密度和功率密度分别为10.16 Wh/kg和2439.02 W/kg。结果表明,加入金属铁氧体的这种协同作用可以提高超级电容器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信