Comparative analysis of impact of non-linear heat source on mixed convective chemically reacted MHD hybrid nanofluid/nanofluid/fluid over a stretched region

Q1 Chemical Engineering
Thanatporn Grace , Ch. Maheswari , Mohana Ramana Ravuri , Talha Anwar , B. Naga Lakshmi , Shaik Mohammed Ibrahim
{"title":"Comparative analysis of impact of non-linear heat source on mixed convective chemically reacted MHD hybrid nanofluid/nanofluid/fluid over a stretched region","authors":"Thanatporn Grace ,&nbsp;Ch. Maheswari ,&nbsp;Mohana Ramana Ravuri ,&nbsp;Talha Anwar ,&nbsp;B. Naga Lakshmi ,&nbsp;Shaik Mohammed Ibrahim","doi":"10.1016/j.ijft.2025.101417","DOIUrl":null,"url":null,"abstract":"<div><div>This study compares <span><math><mrow><mi>F</mi><msub><mi>e</mi><mn>3</mn></msub><msub><mi>O</mi><mn>4</mn></msub><mo>−</mo><mi>A</mi><msub><mi>l</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub><mo>/</mo><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow></math></span> hybrid nanofluid, <span><math><mrow><mi>A</mi><msub><mi>l</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub><mo>−</mo><msub><mi>H</mi><mn>2</mn></msub><mi>O</mi></mrow></math></span> nanofluid and water, analysing velocity, temperature and concentration profiles. Key parameters include mixed convection, buoyancy ratio forces, space-and-temperature-dependent heat sources, thermophoresis, Brownian motion, Hall current, temperature ratio, magnetic field, rotation parameter, thermal radiation, Schmidt number and chemical reaction. Buongiorno model is applied to explore the model. Similarity transformations reduce the governing partial differential equations (PDEs) to ordinary differential equations (ODEs), solved through MATLAB’s BVP-5C with a shooting method. The analysis reveals that increases in mixed convection and buoyancy enhance the <span><math><mi>x</mi></math></span>-direction velocity, whereas magnetic and rotational effects lead to its reduction. The velocity along the <span><math><mi>y</mi></math></span>-axis rises with an increase in the magnetic parameter but declines as the Hall current strengthens. Temperature profile increases with higher values of the space- and temperature-dependent heat source, thermophoresis, Brownian diffusion, rotation parameter, Hall current, thermal radiation and temperature ratio. Concentration is enhanced by thermophoresis but reduced by Brownian diffusion, Schmidt number and chemical reaction effects. The heat transfer rate is enhanced by higher space and temperature dependent heat sources, Brownian motion, thermophoresis and chemical reactions, while it is reduced by increased mixed convection and buoyancy ratios. In contrast, the mass transfer rate increases with all the considered parameters. In the case of velocity distribution, the hybrid nanofluid demonstrates a sharper profile along the <span><math><mi>x</mi></math></span>-direction under mixed convection, whereas the base fluid displays a stronger variation in this direction when influenced by buoyancy, Hall current and rotational effects. Along the <span><math><mi>y</mi></math></span>-direction, the velocity profile of the hybrid nanofluid becomes more pronounced with rising magnetic parameter and Hall current. For the temperature distribution, the hybrid nanofluid attains a considerably higher profile than both nanofluid and base fluid when subjected to space- and temperature-dependent heat generation, thermophoretic forces, Brownian diffusion, Hall current, thermal radiation and temperature ratio. Conversely, the base fluid maintains a steeper concentration gradient in response to thermophoresis, Brownian motion, Schmidt number and chemical reaction parameters. Using Karl Pearson's method, the correlation coefficient shows a strong positive relationship (near 1), between the present and past Nusselt number results.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"30 ","pages":"Article 101417"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725003635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study compares Fe3O4Al2O3/H2O hybrid nanofluid, Al2O3H2O nanofluid and water, analysing velocity, temperature and concentration profiles. Key parameters include mixed convection, buoyancy ratio forces, space-and-temperature-dependent heat sources, thermophoresis, Brownian motion, Hall current, temperature ratio, magnetic field, rotation parameter, thermal radiation, Schmidt number and chemical reaction. Buongiorno model is applied to explore the model. Similarity transformations reduce the governing partial differential equations (PDEs) to ordinary differential equations (ODEs), solved through MATLAB’s BVP-5C with a shooting method. The analysis reveals that increases in mixed convection and buoyancy enhance the x-direction velocity, whereas magnetic and rotational effects lead to its reduction. The velocity along the y-axis rises with an increase in the magnetic parameter but declines as the Hall current strengthens. Temperature profile increases with higher values of the space- and temperature-dependent heat source, thermophoresis, Brownian diffusion, rotation parameter, Hall current, thermal radiation and temperature ratio. Concentration is enhanced by thermophoresis but reduced by Brownian diffusion, Schmidt number and chemical reaction effects. The heat transfer rate is enhanced by higher space and temperature dependent heat sources, Brownian motion, thermophoresis and chemical reactions, while it is reduced by increased mixed convection and buoyancy ratios. In contrast, the mass transfer rate increases with all the considered parameters. In the case of velocity distribution, the hybrid nanofluid demonstrates a sharper profile along the x-direction under mixed convection, whereas the base fluid displays a stronger variation in this direction when influenced by buoyancy, Hall current and rotational effects. Along the y-direction, the velocity profile of the hybrid nanofluid becomes more pronounced with rising magnetic parameter and Hall current. For the temperature distribution, the hybrid nanofluid attains a considerably higher profile than both nanofluid and base fluid when subjected to space- and temperature-dependent heat generation, thermophoretic forces, Brownian diffusion, Hall current, thermal radiation and temperature ratio. Conversely, the base fluid maintains a steeper concentration gradient in response to thermophoresis, Brownian motion, Schmidt number and chemical reaction parameters. Using Karl Pearson's method, the correlation coefficient shows a strong positive relationship (near 1), between the present and past Nusselt number results.
非线性热源对拉伸区域混合对流化学反应MHD混合纳米流体/纳米流体/流体影响的对比分析
本研究比较了Fe3O4 - Al2O3/H2O混合纳米流体、Al2O3 - H2O纳米流体和水,分析了速度、温度和浓度分布。关键参数包括混合对流、浮力比力、空间和温度相关热源、热泳、布朗运动、霍尔电流、温度比、磁场、旋转参数、热辐射、施密特数和化学反应。采用Buongiorno模型对该模型进行了探讨。相似变换将控制偏微分方程(PDEs)简化为常微分方程(ode),通过MATLAB的BVP-5C用射击法求解。分析表明,混合对流和浮力的增加提高了x向速度,而磁场和旋转效应导致x向速度的降低。沿y轴的速度随磁性参数的增加而上升,但随霍尔电流的增强而下降。温度分布随热源、热泳、布朗扩散、旋转参数、霍尔电流、热辐射和温度比的增大而增大。热泳进可以提高浓度,但布朗扩散、施密特数和化学反应效应会降低浓度。较高的空间和温度依赖性热源、布朗运动、热泳动和化学反应提高了传热率,而混合对流和浮力比的增加则降低了传热率。相反,传质速率随所有考虑参数的增加而增加。在速度分布方面,混合对流作用下混合纳米流体在x方向上的变化更明显,而在浮力、霍尔电流和旋转作用下,基底流体在x方向上的变化更大。在y方向上,随着磁参数和霍尔电流的增大,混合纳米流体的速度分布更加明显。对于温度分布,混合纳米流体在受空间和温度相关的产热、热电泳力、布朗扩散、霍尔电流、热辐射和温度比的影响时,比纳米流体和基流体具有更高的特征。相反,在热泳、布朗运动、施密特数和化学反应参数的影响下,基液的浓度梯度更陡。使用卡尔·皮尔森的方法,相关系数显示,在现在和过去的努塞尔数结果之间有很强的正相关关系(接近1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信