Benchmarking the debonding resistance of large-scale thermal protection system composite panels under three-point bending using multi-camera digital image correlation
Yi Luo , Shibo Yan , Tengfei Xu , Han Liu , Xiquan Zhu , Bing Pan
{"title":"Benchmarking the debonding resistance of large-scale thermal protection system composite panels under three-point bending using multi-camera digital image correlation","authors":"Yi Luo , Shibo Yan , Tengfei Xu , Han Liu , Xiquan Zhu , Bing Pan","doi":"10.1016/j.tws.2025.114015","DOIUrl":null,"url":null,"abstract":"<div><div>During prolonged atmospheric entry/re-entry of hyper Mach aircraft, maintaining the structural integrity of the thermal protection system (TPS) is of critical importance for safe flight. Large-scale TPSs are subjected to bending loads induced by fuselage flexure and pressure differentials, resulting in bending deformation. TPS debonding from the aircraft may occur when the interfacial stresses induced by structural deformation exceed the bonding load-bearing capacity, severely compromising flight safety. This study conducts a benchmarking experimental investigation on the debonding resistance of aerogel-based and phenolic impregnated carbon ablator (PICA)-based TPS. The debonding resistance of aerogel-based and PICA-based TPS composite panels was quantified and compared through three-point bending tests. Additionally, multi-camera digital image correlation (MC-DIC) was employed to investigate debonding mechanisms. The comprehensive experiments conclusively establish that aerogel-based TPS composite panels exhibit enhanced debonding resistance to PICA-based TPS composite panels, attributable to the higher bending compliance of aerogel-based TPS composite panels, which mitigates localized strain accumulation and effectively delays debonding initiation. These findings provide crucial insights for optimizing debonding resistance in advanced TPS.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"218 ","pages":"Article 114015"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125011048","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
During prolonged atmospheric entry/re-entry of hyper Mach aircraft, maintaining the structural integrity of the thermal protection system (TPS) is of critical importance for safe flight. Large-scale TPSs are subjected to bending loads induced by fuselage flexure and pressure differentials, resulting in bending deformation. TPS debonding from the aircraft may occur when the interfacial stresses induced by structural deformation exceed the bonding load-bearing capacity, severely compromising flight safety. This study conducts a benchmarking experimental investigation on the debonding resistance of aerogel-based and phenolic impregnated carbon ablator (PICA)-based TPS. The debonding resistance of aerogel-based and PICA-based TPS composite panels was quantified and compared through three-point bending tests. Additionally, multi-camera digital image correlation (MC-DIC) was employed to investigate debonding mechanisms. The comprehensive experiments conclusively establish that aerogel-based TPS composite panels exhibit enhanced debonding resistance to PICA-based TPS composite panels, attributable to the higher bending compliance of aerogel-based TPS composite panels, which mitigates localized strain accumulation and effectively delays debonding initiation. These findings provide crucial insights for optimizing debonding resistance in advanced TPS.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.