Disentangled latent spaces for reduced order models using deterministic autoencoders

IF 3 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Henning Schwarz , Pyei Phyo Lin , Jens-Peter M. Zemke , Thomas Rung
{"title":"Disentangled latent spaces for reduced order models using deterministic autoencoders","authors":"Henning Schwarz ,&nbsp;Pyei Phyo Lin ,&nbsp;Jens-Peter M. Zemke ,&nbsp;Thomas Rung","doi":"10.1016/j.compfluid.2025.106837","DOIUrl":null,"url":null,"abstract":"<div><div>Data-driven reduced-order models based on autoencoders generally lack interpretability compared to classical methods such as the proper orthogonal decomposition. More interpretability can be gained by disentangling the latent variables and analyzing the resulting modes. For this purpose, probabilistic <span><math><mi>β</mi></math></span>-variational autoencoders (<span><math><mi>β</mi></math></span>-VAEs) are frequently used in computational fluid dynamics and other simulation sciences. Using a benchmark periodic flow dataset, we show that competitive results can be achieved using non-probabilistic autoencoder approaches that either promote orthogonality or penalize correlation between latent variables. Compared to probabilistic autoencoders, these approaches offer more robustness with respect to the choice of hyperparameters entering the loss function. We further demonstrate the ability of a non-probabilistic approach to identify a reduced number of active latent variables by introducing a correlation penalty, a function also known from the use of <span><math><mi>β</mi></math></span>-VAE. The investigated probabilistic and non-probabilistic autoencoder models are finally used for the dimensionality reduction of aircraft ditching loads, which serves as an industrial application in this work.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"302 ","pages":"Article 106837"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004579302500297X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Data-driven reduced-order models based on autoencoders generally lack interpretability compared to classical methods such as the proper orthogonal decomposition. More interpretability can be gained by disentangling the latent variables and analyzing the resulting modes. For this purpose, probabilistic β-variational autoencoders (β-VAEs) are frequently used in computational fluid dynamics and other simulation sciences. Using a benchmark periodic flow dataset, we show that competitive results can be achieved using non-probabilistic autoencoder approaches that either promote orthogonality or penalize correlation between latent variables. Compared to probabilistic autoencoders, these approaches offer more robustness with respect to the choice of hyperparameters entering the loss function. We further demonstrate the ability of a non-probabilistic approach to identify a reduced number of active latent variables by introducing a correlation penalty, a function also known from the use of β-VAE. The investigated probabilistic and non-probabilistic autoencoder models are finally used for the dimensionality reduction of aircraft ditching loads, which serves as an industrial application in this work.
使用确定性自编码器的降阶模型的解纠缠潜在空间
与传统的正交分解方法相比,基于自编码器的数据驱动降阶模型通常缺乏可解释性。通过解开潜在变量并分析产生的模式,可以获得更多的可解释性。为此,概率β-变分自编码器(β-VAEs)经常用于计算流体动力学和其他模拟科学。使用基准周期流数据集,我们表明使用非概率自编码器方法可以实现竞争结果,该方法可以促进潜在变量之间的正交性或惩罚相关性。与概率自编码器相比,这些方法在选择进入损失函数的超参数方面提供了更强的鲁棒性。我们进一步证明了非概率方法通过引入相关惩罚来识别减少数量的活动潜在变量的能力,该函数也可以从β-VAE的使用中得知。最后将所研究的概率和非概率自编码器模型用于飞机迫降载荷的降维,并在本工作中具有工业应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信