Improving Sb2Se3 thin-film solar cell performance via stepwise optimization of a TiO2/CdS-coupled buffer layer

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Parag R. Patil , Pravin S. Pawar , Neha Bisht , Rahul K. Yadav , Vishesh Manjunath , Indu Sharma , Yong Tae Kim , Eunjin Jo , Anil V. Ghule , Jaeyeong Heo
{"title":"Improving Sb2Se3 thin-film solar cell performance via stepwise optimization of a TiO2/CdS-coupled buffer layer","authors":"Parag R. Patil ,&nbsp;Pravin S. Pawar ,&nbsp;Neha Bisht ,&nbsp;Rahul K. Yadav ,&nbsp;Vishesh Manjunath ,&nbsp;Indu Sharma ,&nbsp;Yong Tae Kim ,&nbsp;Eunjin Jo ,&nbsp;Anil V. Ghule ,&nbsp;Jaeyeong Heo","doi":"10.1016/j.solmat.2025.113969","DOIUrl":null,"url":null,"abstract":"<div><div>Currently, most of the high-performance Sb<sub>2</sub>Se<sub>3</sub> thin film solar cells (TFSCs) are coupled with a cadmium sulfide (CdS) buffer layer, which has proven effective in enhancing device performance. However, lower bandgap (2.4 eV), presence of shunt paths, and high surface roughness of CdS contribute to optical losses, recombination losses, and carrier extraction inefficiencies in TFSCs. To mitigate these problems, this study introduces an additional cadmium chloride (CdCl<sub>2</sub>) treatment step to modify pristine CdS films deposited via standard chemical bath deposition (CBD). Furthermore, a titanium dioxide (TiO<sub>2</sub>) intermediate layer is introduced beneath the CdCl<sub>2</sub>-treated CdS buffer layer, using a simple spin-coating technique, to form a TiO<sub>2</sub>/CdS-coupled buffer layer. The hydrothermal growth of the Sb<sub>2</sub>Se<sub>3</sub> light absorber over these buffer layers was optimized to fabricate efficient FTO/TiO<sub>2</sub>/CdS/Sb<sub>2</sub>Se<sub>3</sub>/Spiro-OMeTAD/Au structured solar cell devices. The fabricated devices with the pristine CdS, CdCl<sub>2</sub>-treated CdS, and TiO<sub>2</sub>/CdS (CdCl<sub>2</sub>-treated) are denoted as BL1, BL2, and BL3, respectively. The optimized Sb<sub>2</sub>Se<sub>3</sub> TFSC with BL3 reaches a power conversion efficiency (PCE) of 6.19 % which is significantly higher than the device with BL1 (PCE = ∼5.10 %). Furthermore, a surface topography conducted on buffer layers revealed the reduced roughness after CdCl<sub>2</sub> treatment and TiO<sub>2</sub> intermediate layer improved the interface quality. Additionally, the effect of the Sb<sub>2</sub>Se<sub>3</sub> absorber thickness on the device performance was further investigated using the SCAPS-1D software tool. The champion devices with BL1 and BL2 retained ∼90 % of initial efficiency, meanwhile, the PCE of the device with BL3 improved when stored vacuum packed for 4 months.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"295 ","pages":"Article 113969"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825005707","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, most of the high-performance Sb2Se3 thin film solar cells (TFSCs) are coupled with a cadmium sulfide (CdS) buffer layer, which has proven effective in enhancing device performance. However, lower bandgap (2.4 eV), presence of shunt paths, and high surface roughness of CdS contribute to optical losses, recombination losses, and carrier extraction inefficiencies in TFSCs. To mitigate these problems, this study introduces an additional cadmium chloride (CdCl2) treatment step to modify pristine CdS films deposited via standard chemical bath deposition (CBD). Furthermore, a titanium dioxide (TiO2) intermediate layer is introduced beneath the CdCl2-treated CdS buffer layer, using a simple spin-coating technique, to form a TiO2/CdS-coupled buffer layer. The hydrothermal growth of the Sb2Se3 light absorber over these buffer layers was optimized to fabricate efficient FTO/TiO2/CdS/Sb2Se3/Spiro-OMeTAD/Au structured solar cell devices. The fabricated devices with the pristine CdS, CdCl2-treated CdS, and TiO2/CdS (CdCl2-treated) are denoted as BL1, BL2, and BL3, respectively. The optimized Sb2Se3 TFSC with BL3 reaches a power conversion efficiency (PCE) of 6.19 % which is significantly higher than the device with BL1 (PCE = ∼5.10 %). Furthermore, a surface topography conducted on buffer layers revealed the reduced roughness after CdCl2 treatment and TiO2 intermediate layer improved the interface quality. Additionally, the effect of the Sb2Se3 absorber thickness on the device performance was further investigated using the SCAPS-1D software tool. The champion devices with BL1 and BL2 retained ∼90 % of initial efficiency, meanwhile, the PCE of the device with BL3 improved when stored vacuum packed for 4 months.

Abstract Image

通过逐步优化TiO2/ cds耦合缓冲层提高Sb2Se3薄膜太阳能电池性能
目前,大多数高性能的Sb2Se3薄膜太阳能电池(TFSCs)都与硫化镉(cd)缓冲层耦合,这在提高器件性能方面已被证明是有效的。然而,较低的带隙(2.4 eV)、分流路径的存在和cd的高表面粗糙度导致了tfsc中的光学损耗、复合损耗和载流子提取效率低下。为了缓解这些问题,本研究引入了一个额外的氯化镉(CdCl2)处理步骤来修饰通过标准化学浴沉积(CBD)沉积的原始cd膜。此外,在cdcl2处理的CdS缓冲层下,采用简单的自旋涂层技术引入二氧化钛(TiO2)中间层,形成TiO2/CdS耦合缓冲层。优化Sb2Se3光吸收剂在这些缓冲层上的水热生长,以制备高效的FTO/TiO2/CdS/Sb2Se3/Spiro-OMeTAD/Au结构太阳能电池器件。用原始CdS、cdcl2处理过的CdS和TiO2/CdS (cdcl2处理过)制备的器件分别记为BL1、BL2和BL3。优化后的含有BL3的Sb2Se3 TFSC的功率转换效率(PCE)为6.19%,显著高于含有BL1的器件(PCE = ~ 5.10%)。此外,对缓冲层进行的表面形貌分析表明,CdCl2处理后的表面粗糙度降低,TiO2中间层改善了界面质量。此外,利用SCAPS-1D软件工具进一步研究了Sb2Se3吸收体厚度对器件性能的影响。含有BL1和BL2的冠军器件保留了初始效率的约90%,同时,含有BL3的器件在真空包装4个月后的PCE有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信