High-quality data augmentation method based on multi-scale dense attention-enhanced CGAN for Φ-OTDR event recognition

IF 2.5 3区 物理与天体物理 Q2 OPTICS
Wei Shen , Yi Huang , Yi Zhang , Ziyi Wei , Chengyong Hu , Chuanlu Deng , Yanhua Dong , Wei Jin , Lin Chen , Qi Zhang , Wei Chen , Fufei Pang , Xiaobei Zhang , Jianming Tang , Tingyun Wang
{"title":"High-quality data augmentation method based on multi-scale dense attention-enhanced CGAN for Φ-OTDR event recognition","authors":"Wei Shen ,&nbsp;Yi Huang ,&nbsp;Yi Zhang ,&nbsp;Ziyi Wei ,&nbsp;Chengyong Hu ,&nbsp;Chuanlu Deng ,&nbsp;Yanhua Dong ,&nbsp;Wei Jin ,&nbsp;Lin Chen ,&nbsp;Qi Zhang ,&nbsp;Wei Chen ,&nbsp;Fufei Pang ,&nbsp;Xiaobei Zhang ,&nbsp;Jianming Tang ,&nbsp;Tingyun Wang","doi":"10.1016/j.optcom.2025.132429","DOIUrl":null,"url":null,"abstract":"<div><div>A data augmentation method based on multi-scale dense attention-enhanced (MDA) conditional generative adversarial network (CGAN) is proposed for generating high-quality samples, which aims to address the challenge of limited data acquisition in phase-sensitive optical time-domain reflectometry (<span><math><mi>Φ</mi></math></span>-OTDR). The raw data from the <span><math><mi>Φ</mi></math></span>-OTDR system can be transformed into visualized two-dimensional images to extract real disturbance data, with each disturbance type displaying distinguishable features in the generated images. The MDA U-Net is incorporated as the generator in the CGAN to produce samples for dataset expansion, where the dense convolutional block attention module is added to the skip connection to focus on the key information of events, and the single-layer output of U-Net is replaced with a multi-scale connection output for multi-layer feature fusion. The discriminator adopts a multi-scale convolution structure to enhance the discriminant ability. The multi-event recognition experiments for the fenced fiber optic demonstrate that the augmented dataset enables three testing classification models to achieve recognition accuracy above 97.93%.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"596 ","pages":"Article 132429"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825009575","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A data augmentation method based on multi-scale dense attention-enhanced (MDA) conditional generative adversarial network (CGAN) is proposed for generating high-quality samples, which aims to address the challenge of limited data acquisition in phase-sensitive optical time-domain reflectometry (Φ-OTDR). The raw data from the Φ-OTDR system can be transformed into visualized two-dimensional images to extract real disturbance data, with each disturbance type displaying distinguishable features in the generated images. The MDA U-Net is incorporated as the generator in the CGAN to produce samples for dataset expansion, where the dense convolutional block attention module is added to the skip connection to focus on the key information of events, and the single-layer output of U-Net is replaced with a multi-scale connection output for multi-layer feature fusion. The discriminator adopts a multi-scale convolution structure to enhance the discriminant ability. The multi-event recognition experiments for the fenced fiber optic demonstrate that the augmented dataset enables three testing classification models to achieve recognition accuracy above 97.93%.
基于多尺度密集关注增强CGAN的Φ-OTDR事件识别高质量数据增强方法
针对相敏光学时域反射测量中数据采集有限的问题,提出了一种基于多尺度密集注意增强(MDA)条件生成对抗网络(CGAN)的数据增强方法来生成高质量的样本(Φ-OTDR)。来自Φ-OTDR系统的原始数据可以转换成可视化的二维图像来提取真实的干扰数据,每种干扰类型在生成的图像中显示出可区分的特征。在CGAN中引入MDA的U-Net作为生成器,生成样本用于数据集扩展,在跳跃连接中加入密集卷积块关注模块,聚焦事件的关键信息,将U-Net的单层输出替换为多尺度连接输出,进行多层特征融合。鉴别器采用多尺度卷积结构,增强了鉴别能力。对围栏光纤的多事件识别实验表明,增强数据集使三种测试分类模型的识别准确率达到97.93%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信