Enhanced strength - Ductility synergy in laser direct energy deposited Al-Cr-Fe-Ni multi-principal element alloy via interlayer pause strategy

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Liufei Huang , Xuanhong Cai , Yifei Xu , Abdukadir Amar , Dou Wang , Yaoning Sun , Jinfeng Li
{"title":"Enhanced strength - Ductility synergy in laser direct energy deposited Al-Cr-Fe-Ni multi-principal element alloy via interlayer pause strategy","authors":"Liufei Huang ,&nbsp;Xuanhong Cai ,&nbsp;Yifei Xu ,&nbsp;Abdukadir Amar ,&nbsp;Dou Wang ,&nbsp;Yaoning Sun ,&nbsp;Jinfeng Li","doi":"10.1016/j.msea.2025.149145","DOIUrl":null,"url":null,"abstract":"<div><div>Laser direct energy deposition (L-DED) serves as an advanced near-net-shaping technique for fabricating complex metallic structural components. However, complex thermal histories and epitaxial growth characteristics inherent to L-DED processes cause microstructural coarsening and anisotropy, leading to significant property heterogeneity. This work introduces an interlayer pause strategy (with pause durations ranging from 60 to 300 s) to mitigate heat accumulation during layer-by-layer deposition by optimizing molten pool thermal profiles, thereby refining as-printed microstructures and enhancing vertical structural homogeneity. The processed alloy exhibits kinked FCC substructures at sub-micron scales alongside decomposed BCC/B2 nanostructures. This unique multiscale architecture overcomes strength-ductility trade-offs and enabling remarkably low mechanical anisotropy. Specimens fabricated with the optimal interlayer pause condition (∼180 s) demonstrate further enhanced mechanical properties, achieving ultimate tensile strengths exceeding 1.43 GPa while maintaining ductilities ≥18 %. This approach provides a straightforward yet effective solution for controlling complex thermal histories in laser-based multilayer deposition.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"946 ","pages":"Article 149145"},"PeriodicalIF":7.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325013693","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Laser direct energy deposition (L-DED) serves as an advanced near-net-shaping technique for fabricating complex metallic structural components. However, complex thermal histories and epitaxial growth characteristics inherent to L-DED processes cause microstructural coarsening and anisotropy, leading to significant property heterogeneity. This work introduces an interlayer pause strategy (with pause durations ranging from 60 to 300 s) to mitigate heat accumulation during layer-by-layer deposition by optimizing molten pool thermal profiles, thereby refining as-printed microstructures and enhancing vertical structural homogeneity. The processed alloy exhibits kinked FCC substructures at sub-micron scales alongside decomposed BCC/B2 nanostructures. This unique multiscale architecture overcomes strength-ductility trade-offs and enabling remarkably low mechanical anisotropy. Specimens fabricated with the optimal interlayer pause condition (∼180 s) demonstrate further enhanced mechanical properties, achieving ultimate tensile strengths exceeding 1.43 GPa while maintaining ductilities ≥18 %. This approach provides a straightforward yet effective solution for controlling complex thermal histories in laser-based multilayer deposition.
通过层间暂停策略增强激光直接能量沉积Al-Cr-Fe-Ni多主元素合金的强度-延性协同效应
激光直接能量沉积(L-DED)是一种先进的近净成形技术,用于制造复杂的金属结构部件。然而,L-DED工艺固有的复杂热历史和外延生长特性导致微观结构粗化和各向异性,导致显著的性能非均质性。这项工作引入了一种层间暂停策略(暂停时间从60到300秒不等),通过优化熔池热剖面来减轻逐层沉积过程中的热量积累,从而改善打印时的微观结构并增强垂直结构的均匀性。加工后的合金在亚微米尺度上呈现出弯曲的FCC亚结构和分解的BCC/B2纳米结构。这种独特的多尺度结构克服了强度与延性的权衡,实现了非常低的机械各向异性。在最佳层间暂停条件下(~ 180 s)制备的试样显示出进一步增强的力学性能,达到超过1.43 GPa的极限拉伸强度,同时保持≥18%的延展性。这种方法为控制激光多层沉积过程中复杂的热历史提供了一种简单而有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信