Complete λ-hypersurfaces with constant norm of the second fundamental form

IF 1.2 3区 数学 Q1 MATHEMATICS
Pengpeng Cheng, Tongzhu Li
{"title":"Complete λ-hypersurfaces with constant norm of the second fundamental form","authors":"Pengpeng Cheng,&nbsp;Tongzhu Li","doi":"10.1016/j.jmaa.2025.130071","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce a new divergence theorem on a complete proper <em>λ</em>-hypersurface. By the new divergence theorem we classify <em>λ</em>-hypersurfaces under the conditions that the squared norm of the second fundamental form <em>S</em> and the 3-order mean curvature <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> are constant. In particular, when <span><math><mi>λ</mi><mo>=</mo><mn>0</mn></math></span>, the self-shrinker (i.e., 0-hypersurface) is either a hyperplane <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> passing through the origin, a cylinder <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>(</mo><msqrt><mrow><mi>k</mi></mrow></msqrt><mo>)</mo><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msup><mo>,</mo><mspace></mspace><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, or a round sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>)</mo></math></span> with center at the origin.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130071"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008522","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a new divergence theorem on a complete proper λ-hypersurface. By the new divergence theorem we classify λ-hypersurfaces under the conditions that the squared norm of the second fundamental form S and the 3-order mean curvature f3 are constant. In particular, when λ=0, the self-shrinker (i.e., 0-hypersurface) is either a hyperplane Rn passing through the origin, a cylinder Sk(k)×Rnk,1kn1, or a round sphere Sn(n) with center at the origin.
第二基本形式的常范数完备λ超曲面
本文给出了完全固有λ超曲面上的一个新的散度定理。在二阶基本形式S的平方范数和三阶平均曲率f3为常数的条件下,利用新的散度定理对λ-超曲面进行了分类。特别地,当λ=0时,自收缩器(即0-超曲面)要么是穿过原点的超平面Rn,要么是圆柱体Sk(k)×Rn−k,1≤k≤n−1,要么是圆心在原点的圆球Sn(n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信