Dynamic learning of auditory attention patterns under combinatorial space

IF 6.8 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Dongrui Gao , Aisen Deng , Manqing Wang , Shihong Liu , Haokai Zhang , Shuanghu Liu , Dingming Wu , Pengrui Li
{"title":"Dynamic learning of auditory attention patterns under combinatorial space","authors":"Dongrui Gao ,&nbsp;Aisen Deng ,&nbsp;Manqing Wang ,&nbsp;Shihong Liu ,&nbsp;Haokai Zhang ,&nbsp;Shuanghu Liu ,&nbsp;Dingming Wu ,&nbsp;Pengrui Li","doi":"10.1016/j.aej.2025.09.035","DOIUrl":null,"url":null,"abstract":"<div><div>Humans exhibit auditory attentional selectivity in noisy environments, which provides biological inspiration for addressing the auditory attention decoding (AAD) problem. In recent years, geometric learning (GL) has demonstrated impressive performance in decoding noisy electroencephalography (EEG) signals. However, current techniques can be further improved while confronting low signal-to-noise ratio and spatiotemporal complexity. Here, this paper proposes a multi-space dynamic learning strategy (MEC-MSL) under manifold–Euclidean combinatorics, which embeds knowledge spectra in different spaces to achieve robust feature learning in multi-dimensional spaces thereby decoding efficient auditory attention representations. Specifically, MEC-MSL enhances the representation of knowledge spectra in Euclidean space from multiple perspectives and incorporates an attention mechanism to calibrate contextual information, and then capturing more discriminative patterns. Simultaneously, a manifold self-attention module is developed to explore high-dimensional prior topological representations. Furthermore, a dynamic topological pattern learning module is constructed to fully characterize the local and global functional linkages of EEGs for efficient feature extraction in hybrid space. Experimental results on the KUL, DTU and AVED auditory attention datasets demonstrate that the proposed MEC-MSL achieves state-of-the-art decoding performance and computational efficiency, providing a novel solution for robust and efficient auditory attention representation. The source code is publicly available at <span><span>https://github.com/dddyuu/MEC-MSL</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"130 ","pages":"Pages 551-563"},"PeriodicalIF":6.8000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825009986","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Humans exhibit auditory attentional selectivity in noisy environments, which provides biological inspiration for addressing the auditory attention decoding (AAD) problem. In recent years, geometric learning (GL) has demonstrated impressive performance in decoding noisy electroencephalography (EEG) signals. However, current techniques can be further improved while confronting low signal-to-noise ratio and spatiotemporal complexity. Here, this paper proposes a multi-space dynamic learning strategy (MEC-MSL) under manifold–Euclidean combinatorics, which embeds knowledge spectra in different spaces to achieve robust feature learning in multi-dimensional spaces thereby decoding efficient auditory attention representations. Specifically, MEC-MSL enhances the representation of knowledge spectra in Euclidean space from multiple perspectives and incorporates an attention mechanism to calibrate contextual information, and then capturing more discriminative patterns. Simultaneously, a manifold self-attention module is developed to explore high-dimensional prior topological representations. Furthermore, a dynamic topological pattern learning module is constructed to fully characterize the local and global functional linkages of EEGs for efficient feature extraction in hybrid space. Experimental results on the KUL, DTU and AVED auditory attention datasets demonstrate that the proposed MEC-MSL achieves state-of-the-art decoding performance and computational efficiency, providing a novel solution for robust and efficient auditory attention representation. The source code is publicly available at https://github.com/dddyuu/MEC-MSL.
组合空间下听觉注意模式的动态学习
人类在嘈杂环境中表现出听觉注意选择性,这为解决听觉注意解码(AAD)问题提供了生物学启示。近年来,几何学习(GL)在解码噪声脑电图(EEG)信号方面表现出了令人印象深刻的效果。然而,当前的技术在面对低信噪比和时空复杂性的情况下还可以进一步改进。本文提出了一种基于流形-欧几里得组合的多空间动态学习策略(MEC-MSL),该策略将知识谱嵌入到不同的空间中,实现多维空间的鲁棒特征学习,从而解码高效的听觉注意表征。具体而言,MEC-MSL从多个角度增强了知识谱在欧几里得空间中的表示,并引入了注意机制来校准上下文信息,从而捕获更多的判别模式。同时,开发了一个流形自关注模块来探索高维先验拓扑表示。在此基础上,构建了动态拓扑模式学习模块,充分表征脑电信号的局部和全局功能联系,实现了脑电信号在混合空间中的高效特征提取。在KUL、DTU和AVED听觉注意数据集上的实验结果表明,所提出的MEC-MSL达到了最先进的解码性能和计算效率,为鲁棒和高效的听觉注意表示提供了一种新的解决方案。源代码可在https://github.com/dddyuu/MEC-MSL上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信