Reproducibility of magnetron-sputter co-deposited ZrCu metallic glasses

IF 1.8 4区 化学 Q3 CHEMISTRY, PHYSICAL
Heloisa H.P. Silva , Matheus R.B. do Amaral , Angelo L. Gobbi , Carlos A.R. Costa , Edson R. Leite , Jefferson Bettini
{"title":"Reproducibility of magnetron-sputter co-deposited ZrCu metallic glasses","authors":"Heloisa H.P. Silva ,&nbsp;Matheus R.B. do Amaral ,&nbsp;Angelo L. Gobbi ,&nbsp;Carlos A.R. Costa ,&nbsp;Edson R. Leite ,&nbsp;Jefferson Bettini","doi":"10.1016/j.susc.2025.122853","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, the reproducibility of the magnetron sputtering technique was studied for more than three years using three sets of metallic glass samples grown by co-deposition of Zr and Cu. The reproducibility of metallic glasses or amorphous thin films is particularly critical due to their sensitivity to composition and structure. The analysis was made considering composition and deposition rate variation among the three sets and among the samples with different compositions of Zr<sub>x</sub>Cu<sub>1-x</sub> and pure Zr and Cu. The composition was measured using Energy Dispersive Spectroscopy and Electron Energy Loss Spectroscopy, and the deposition rate was analyzed by Atomic Force Microscopy. The electron Pair Distribution Function was used to study the structural variation among the three sets and the samples in each set. Finally, the oxygen incorporation in the samples was investigated by electron Pair Distribution Function, Energy Loss Spectroscopy, and X-ray Photoelectron Spectroscopy to understand the oxygen profile incorporation. The analysis of the sets of samples indicated that reproducibility should be improved in the sputtering process of ZrCu alloys. Some improvements to increase the reproducibility of the sputtering technique were suggested.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"763 ","pages":"Article 122853"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602825001591","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the reproducibility of the magnetron sputtering technique was studied for more than three years using three sets of metallic glass samples grown by co-deposition of Zr and Cu. The reproducibility of metallic glasses or amorphous thin films is particularly critical due to their sensitivity to composition and structure. The analysis was made considering composition and deposition rate variation among the three sets and among the samples with different compositions of ZrxCu1-x and pure Zr and Cu. The composition was measured using Energy Dispersive Spectroscopy and Electron Energy Loss Spectroscopy, and the deposition rate was analyzed by Atomic Force Microscopy. The electron Pair Distribution Function was used to study the structural variation among the three sets and the samples in each set. Finally, the oxygen incorporation in the samples was investigated by electron Pair Distribution Function, Energy Loss Spectroscopy, and X-ray Photoelectron Spectroscopy to understand the oxygen profile incorporation. The analysis of the sets of samples indicated that reproducibility should be improved in the sputtering process of ZrCu alloys. Some improvements to increase the reproducibility of the sputtering technique were suggested.

Abstract Image

磁控溅射共沉积ZrCu金属玻璃的再现性
本文利用Zr和Cu共沉积的三组金属玻璃样品,对磁控溅射技术的再现性进行了三年多的研究。由于金属玻璃或非晶薄膜对成分和结构的敏感性,其再现性尤为关键。分析了三组样品之间以及不同ZrxCu1-x和纯Zr和Cu成分样品之间的组成和沉积速率变化。利用能量色散光谱和电子能量损失光谱测定了其组成,并用原子力显微镜分析了沉积速率。利用电子对分布函数研究了三组样品和每组样品之间的结构变化。最后,利用电子对分布函数、能量损失谱和x射线光电子能谱分析了样品中的氧掺杂情况。对样品的分析表明,ZrCu合金溅射过程的再现性有待提高。提出了提高溅射技术再现性的改进措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Surface Science
Surface Science 化学-物理:凝聚态物理
CiteScore
3.30
自引率
5.30%
发文量
137
审稿时长
25 days
期刊介绍: Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to: • model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions • nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena • reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization • phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization • surface reactivity for environmental protection and pollution remediation • interactions at surfaces of soft matter, including polymers and biomaterials. Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信