Luqman E. Oloore , Abiodun E. Adeoye , Moteb Alotaibi , Amani M. Alansi , Naef A.A. Qasem , Talal F. Qahtan
{"title":"From theory to practice: Evolving methods and challenges in green hydrogen production","authors":"Luqman E. Oloore , Abiodun E. Adeoye , Moteb Alotaibi , Amani M. Alansi , Naef A.A. Qasem , Talal F. Qahtan","doi":"10.1016/j.rser.2025.116244","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen is emerging as a cornerstone of the clean energy transition, offering a high-density, zero-carbon fuel for decarbonizing electricity, heat, industry, and mobility. Among various pathways, green hydrogen—produced via water or biomass splitting using renewable energy—presents the most sustainable route, with near-zero lifecycle CO<sub>2</sub> emissions. This review systematically evaluates key green hydrogen production methods, including electrolysis (alkaline electrolysis, proton exchange membrane electrolysis, solid oxide electrolysis cell, and high-temperature steam electrolysis), chemical routes (biomass gasification, methane pyrolysis, hydrogen sulfide splitting), photo-based techniques (photoelectrochemical and photocatalytic), biological systems, hybrid processes (solar-thermal, wind-to-H<sub>2</sub>, geothermal), and emerging technologies (plasma decomposition, nuclear-driven, and ocean energy hydrogen). A comparative analysis is provided on efficiency (1–90 %), energy consumption (30–60 kWh/kg H<sub>2</sub>), cost ($2–6/kg), technology readiness (TRL 3–9), and scalability. While electrolysis remains the frontrunner due to high efficiency and integration with renewables, biohydrogen and methane pyrolysis offer promising synergies with waste valorization and carbon co-products. Advanced solar-thermal and photo-based systems show long-term potential but remain in early development. Despite rapid progress, challenges persist in capital cost, durability (e.g., PEC >1,000 h), and infrastructure integration. Global levelized costs are projected to fall below $2–3/kg by 2030 with policy incentives and falling renewable prices. Accelerating commercialization will require continued research and development in materials, modular system design, and supportive frameworks such as carbon pricing, tax credits, and green hydrogen targets.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"226 ","pages":"Article 116244"},"PeriodicalIF":16.3000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125009177","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen is emerging as a cornerstone of the clean energy transition, offering a high-density, zero-carbon fuel for decarbonizing electricity, heat, industry, and mobility. Among various pathways, green hydrogen—produced via water or biomass splitting using renewable energy—presents the most sustainable route, with near-zero lifecycle CO2 emissions. This review systematically evaluates key green hydrogen production methods, including electrolysis (alkaline electrolysis, proton exchange membrane electrolysis, solid oxide electrolysis cell, and high-temperature steam electrolysis), chemical routes (biomass gasification, methane pyrolysis, hydrogen sulfide splitting), photo-based techniques (photoelectrochemical and photocatalytic), biological systems, hybrid processes (solar-thermal, wind-to-H2, geothermal), and emerging technologies (plasma decomposition, nuclear-driven, and ocean energy hydrogen). A comparative analysis is provided on efficiency (1–90 %), energy consumption (30–60 kWh/kg H2), cost ($2–6/kg), technology readiness (TRL 3–9), and scalability. While electrolysis remains the frontrunner due to high efficiency and integration with renewables, biohydrogen and methane pyrolysis offer promising synergies with waste valorization and carbon co-products. Advanced solar-thermal and photo-based systems show long-term potential but remain in early development. Despite rapid progress, challenges persist in capital cost, durability (e.g., PEC >1,000 h), and infrastructure integration. Global levelized costs are projected to fall below $2–3/kg by 2030 with policy incentives and falling renewable prices. Accelerating commercialization will require continued research and development in materials, modular system design, and supportive frameworks such as carbon pricing, tax credits, and green hydrogen targets.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.