Controllable design of multi-shell hollow Co3O4/graphite nanosheets composite with broadband microwave absorption performance

IF 5.5 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Yuanyuan Ma , Yingkun Yang , Guoqin Chen , Chunyu Wang , Pingping Wang , Zengyan Wei , Puzhen Shao , Bo Zhong , Long Xia , Gaohui Wu
{"title":"Controllable design of multi-shell hollow Co3O4/graphite nanosheets composite with broadband microwave absorption performance","authors":"Yuanyuan Ma ,&nbsp;Yingkun Yang ,&nbsp;Guoqin Chen ,&nbsp;Chunyu Wang ,&nbsp;Pingping Wang ,&nbsp;Zengyan Wei ,&nbsp;Puzhen Shao ,&nbsp;Bo Zhong ,&nbsp;Long Xia ,&nbsp;Gaohui Wu","doi":"10.1016/j.matchar.2025.115543","DOIUrl":null,"url":null,"abstract":"<div><div>In the pursuit of high-performance electromagnetic wave (EMW) absorbing materials, achieving both strong absorption and broad bandwidth remains a significant challenge. The reasonable and effective design of special microstructures is a crucial aspect for achieving efficient microwave absorption performance in electromagnetic wave absorbing materials. This study presents a breakthrough by designing a novel multi-shell hollow Co₃O₄/graphite nanosheets (ms-Co₃O₄/GNs) composite integrated with dielectric MoS₂ layers via a precise-regulated solvent thermal bonding annealing method, which demonstrates exceptional microwave absorption properties. The optimized MoS<sub>2</sub>/Co<sub>3</sub>O<sub>4</sub>/GNs composites exhibit superior electromagnetic wave absorption properties with a remarkable minimum reflection loss of −49.3 dB at an ultrathin thickness of 1.5 mm. Furthermore, the composite achieves an ultra-wide effective absorption bandwidth (EAB, RL ≤ −10 dB) of 4.96 GHz at just 1.8 mm, covering critical frequency ranges for 5G and radar applications. The superior wave-absorbing properties primarily stems from its unique multi-shell hollow structure, abundant heterogeneous interfaces, and the optimized, nearly perfect impedance matching characteristics. This work not only advances the development of Co₃O₄-based absorbers but also provides a generalizable strategy for designing lightweight, broadband, and high-strength EMW absorption materials through intelligent microstructure engineering.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"229 ","pages":"Article 115543"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580325008320","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

In the pursuit of high-performance electromagnetic wave (EMW) absorbing materials, achieving both strong absorption and broad bandwidth remains a significant challenge. The reasonable and effective design of special microstructures is a crucial aspect for achieving efficient microwave absorption performance in electromagnetic wave absorbing materials. This study presents a breakthrough by designing a novel multi-shell hollow Co₃O₄/graphite nanosheets (ms-Co₃O₄/GNs) composite integrated with dielectric MoS₂ layers via a precise-regulated solvent thermal bonding annealing method, which demonstrates exceptional microwave absorption properties. The optimized MoS2/Co3O4/GNs composites exhibit superior electromagnetic wave absorption properties with a remarkable minimum reflection loss of −49.3 dB at an ultrathin thickness of 1.5 mm. Furthermore, the composite achieves an ultra-wide effective absorption bandwidth (EAB, RL ≤ −10 dB) of 4.96 GHz at just 1.8 mm, covering critical frequency ranges for 5G and radar applications. The superior wave-absorbing properties primarily stems from its unique multi-shell hollow structure, abundant heterogeneous interfaces, and the optimized, nearly perfect impedance matching characteristics. This work not only advances the development of Co₃O₄-based absorbers but also provides a generalizable strategy for designing lightweight, broadband, and high-strength EMW absorption materials through intelligent microstructure engineering.
具有宽带微波吸收性能的多壳空心Co3O4/石墨纳米片复合材料的可控设计
在追求高性能电磁波(EMW)吸收材料的过程中,实现强吸收和宽带宽仍然是一个重大挑战。特殊微结构的合理有效设计是电磁波吸波材料实现高效微波吸收性能的关键。本研究通过精确调节溶剂热键合退火方法,设计了一种新型的多壳中空Co₃O₄/石墨纳米片(ms-Co₃O₄/GNs)与介电MoS₂层集成的复合材料,具有优异的微波吸收性能。优化后的MoS2/Co3O4/GNs复合材料具有优异的电磁波吸收性能,在超薄厚度为1.5 mm时,反射损耗最小为- 49.3 dB。此外,该复合材料在1.8 mm处实现了4.96 GHz的超宽有效吸收带宽(EAB, RL≤- 10 dB),覆盖了5G和雷达应用的关键频率范围。其优越的吸波性能主要源于其独特的多壳中空结构、丰富的非均质界面以及优化的、近乎完美的阻抗匹配特性。这项工作不仅推动了Co₃O₄基吸收剂的发展,而且通过智能微观结构工程为设计轻质、宽带和高强度EMW吸收材料提供了一种通用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信