Dark equation of state for the Gauss–Bonnet universe

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Byron P. Brassel , Sumeekha Singh , Sunil D. Maharaj
{"title":"Dark equation of state for the Gauss–Bonnet universe","authors":"Byron P. Brassel ,&nbsp;Sumeekha Singh ,&nbsp;Sunil D. Maharaj","doi":"10.1016/j.aop.2025.170234","DOIUrl":null,"url":null,"abstract":"<div><div>We study pressure models in higher dimensional general relativity and Einstein-Gauss–Bonnet (EGB) gravity in a spherically symmetric spacetime. In EGB gravity, we show that the dynamics of the model are governed by an Abel differential equation of the second kind. A general first integral is possible for all values of the spatial curvature, equation of state parameter and spacetime dimension. We further show that an explicit solution is possible for the cosmic scale factor in EGB gravity for the dark energy equation of state. We further demonstrate that for the dark energy equation of state, an anti-de Sitter-Gauss–Bonnet universe is possible, which is not necessarily the case in general relativity. It is also shown that the effective pressure of the Gauss–Bonnet universe contains the higher order curvature corrections and remains, like the general relativity case, negative for all dimensions. The Hawking temperature of the dark Gauss–Bonnet universe is found and is positive and constant for all spatial curvature, and depends critically on the spacetime dimension.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"482 ","pages":"Article 170234"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491625003161","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We study pressure models in higher dimensional general relativity and Einstein-Gauss–Bonnet (EGB) gravity in a spherically symmetric spacetime. In EGB gravity, we show that the dynamics of the model are governed by an Abel differential equation of the second kind. A general first integral is possible for all values of the spatial curvature, equation of state parameter and spacetime dimension. We further show that an explicit solution is possible for the cosmic scale factor in EGB gravity for the dark energy equation of state. We further demonstrate that for the dark energy equation of state, an anti-de Sitter-Gauss–Bonnet universe is possible, which is not necessarily the case in general relativity. It is also shown that the effective pressure of the Gauss–Bonnet universe contains the higher order curvature corrections and remains, like the general relativity case, negative for all dimensions. The Hawking temperature of the dark Gauss–Bonnet universe is found and is positive and constant for all spatial curvature, and depends critically on the spacetime dimension.
高斯-邦纳宇宙的暗状态方程
我们研究了高维广义相对论中的压力模型和球对称时空中的爱因斯坦-高斯-博内(EGB)引力。在EGB重力中,我们证明了模型的动力学是由第二类Abel微分方程控制的。对于空间曲率、状态方程参数和时空维数的所有值,一般的一阶积分都是可能的。我们进一步证明了暗能量状态方程的EGB引力中宇宙尺度因子的显式解是可能的。我们进一步证明,对于暗能量状态方程,反de Sitter-Gauss-Bonnet宇宙是可能的,这在广义相对论中并不一定是这样。本文还表明,高斯-邦纳宇宙的有效压力包含高阶曲率修正,并且像广义相对论的情况一样,在所有维度上都是负的。发现了黑暗高斯-博内宇宙的霍金温度,它对所有空间曲率都是正的和恒定的,并且严重依赖于时空维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信