Gulam Rabbani , Akbar Mohammad , Mohammad Ehtisham Khan , Waleed Zakri , Mohsin Vahid Khan , Khurshid Ahamd , Wahid Ali , Syed Kashif Ali , Nazim Hasan , Abdulrahman Khamaj , Jintae Lee
{"title":"Nafion-stabilized silver nanoparticles modified glassy carbon electrode for ultrasensitive detection of alpha-1-acid glycoprotein","authors":"Gulam Rabbani , Akbar Mohammad , Mohammad Ehtisham Khan , Waleed Zakri , Mohsin Vahid Khan , Khurshid Ahamd , Wahid Ali , Syed Kashif Ali , Nazim Hasan , Abdulrahman Khamaj , Jintae Lee","doi":"10.1016/j.bioelechem.2025.109112","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, alpha-1-acid glycoprotein (AGP), a crucial biomarker associated with various diseases and physiological conditions, was selected for detection using the developed immunosensor. The immunosensor was fabricated by depositing a synthesized Nafion/silver nanoparticles (AgNPs) nanocomposite on the glassy carbon electrode as the substrate material. The changes in the physicochemical properties after Nafion/AgNPs nanocomposite deposition were analyzed through SEM and XPS measurements. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to analyze the immunosensor fabrication's electrochemical performance. AGP was detected through the immobilized anti-AGP on the electrode surface. The developed immunosensor exhibited a wide linear detection range from 0.05 to 3.2 mg/mL and a LOD of 0.17 mg/mL. The developed immunosensor showed excellent selectivity and repeatability when subjected to different kinds of interfering proteins. The recovery of AGP ranged from 101.7 to 103.7 % and RSD was <4 %, indicating high accuracy in real samples detection. The immunosensor developed for AGP detection showed a number of beneficial characteristics, including low cost and small volume sample requirements, making it highly suitable for point-of-care applications. This study provides new insights into the precise fabrication and affordable immunosensors for diverse clinical diagnostic applications.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"168 ","pages":"Article 109112"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425002154","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, alpha-1-acid glycoprotein (AGP), a crucial biomarker associated with various diseases and physiological conditions, was selected for detection using the developed immunosensor. The immunosensor was fabricated by depositing a synthesized Nafion/silver nanoparticles (AgNPs) nanocomposite on the glassy carbon electrode as the substrate material. The changes in the physicochemical properties after Nafion/AgNPs nanocomposite deposition were analyzed through SEM and XPS measurements. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to analyze the immunosensor fabrication's electrochemical performance. AGP was detected through the immobilized anti-AGP on the electrode surface. The developed immunosensor exhibited a wide linear detection range from 0.05 to 3.2 mg/mL and a LOD of 0.17 mg/mL. The developed immunosensor showed excellent selectivity and repeatability when subjected to different kinds of interfering proteins. The recovery of AGP ranged from 101.7 to 103.7 % and RSD was <4 %, indicating high accuracy in real samples detection. The immunosensor developed for AGP detection showed a number of beneficial characteristics, including low cost and small volume sample requirements, making it highly suitable for point-of-care applications. This study provides new insights into the precise fabrication and affordable immunosensors for diverse clinical diagnostic applications.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.