{"title":"Generalized Cayley graphs and perfect code","authors":"Fateme Sadat Seiedali , Zeinab Akhlaghi , Behrooz Khosravi","doi":"10.1016/j.disc.2025.114805","DOIUrl":null,"url":null,"abstract":"<div><div>A subset <em>C</em> of the vertex set of a graph Γ is said to be <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span>-regular if <em>C</em> induces an <em>a</em>-regular subgraph and every vertex outside <em>C</em> is adjacent to exactly <em>b</em> vertices in <em>C</em>. A <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-regular set is called a perfect code. Let <em>G</em> be a group and <span><math><mi>α</mi><mo>∈</mo><mrow><mi>Aut</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math></span> such that <span><math><msup><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mrow><mi>id</mi></mrow></math></span>. Let <span><math><mi>S</mi><mo>⊆</mo><mi>G</mi></math></span>, with <span><math><mi>α</mi><mo>(</mo><mi>S</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> and <span><math><mi>S</mi><mo>∩</mo><mo>{</mo><mi>α</mi><mo>(</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo><mi>g</mi><mspace></mspace><mo>:</mo><mspace></mspace><mi>g</mi><mo>∈</mo><mi>G</mi><mo>}</mo><mo>=</mo><mo>∅</mo></math></span>. The generalized Cayley graph of <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>)</mo></math></span> with respect to <em>S</em> is a graph with vertex set <em>G</em> and two distinct elements <span><math><mi>g</mi><mo>,</mo><mi>h</mi><mo>∈</mo><mi>G</mi></math></span> are adjacent if and only if <span><math><mi>α</mi><mo>(</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo><mi>h</mi><mo>∈</mo><mi>S</mi></math></span>. If <span><math><mi>α</mi><mo>=</mo><mrow><mi>id</mi></mrow></math></span>, then the described graph is called a Cayley graph of <em>G</em> with respect to <em>S</em>. By an <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span>-regular set (resp. a perfect code) of <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>)</mo></math></span> we mean an <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span>-regular set (resp. a perfect code) in a generalized Cayley graph of <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>)</mo></math></span> with respect to some subset <em>S</em>. Let <em>G</em> be a group, <span><math><mi>α</mi><mo>∈</mo><mrow><mi>Aut</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math></span>, <span><math><msup><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mrow><mi>id</mi></mrow></math></span> and <em>H</em> be a subgroup of <em>G</em>. In this paper, we give a necessary and sufficient condition for <em>H</em> to be a perfect code of <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>)</mo></math></span>. This result is a generalization of <span><span>[9, Theorem 3.1]</span></span> that gives a condition for a subgroup to be a perfect code in a Cayley graph of <em>G</em>. As another result, when <em>G</em> is an abelian group, we determine all pairs <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span> such that <em>H</em> is an <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span>-regular set of <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>α</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114805"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25004133","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A subset C of the vertex set of a graph Γ is said to be -regular if C induces an a-regular subgraph and every vertex outside C is adjacent to exactly b vertices in C. A -regular set is called a perfect code. Let G be a group and such that . Let , with and . The generalized Cayley graph of with respect to S is a graph with vertex set G and two distinct elements are adjacent if and only if . If , then the described graph is called a Cayley graph of G with respect to S. By an -regular set (resp. a perfect code) of we mean an -regular set (resp. a perfect code) in a generalized Cayley graph of with respect to some subset S. Let G be a group, , and H be a subgroup of G. In this paper, we give a necessary and sufficient condition for H to be a perfect code of . This result is a generalization of [9, Theorem 3.1] that gives a condition for a subgroup to be a perfect code in a Cayley graph of G. As another result, when G is an abelian group, we determine all pairs such that H is an -regular set of .
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.