On the performance of the joint velocity-scalar PDF method near walls

IF 5.2 2区 工程技术 Q2 ENERGY & FUELS
Tin-Hang Un , Salvador Navarro-Martinez
{"title":"On the performance of the joint velocity-scalar PDF method near walls","authors":"Tin-Hang Un ,&nbsp;Salvador Navarro-Martinez","doi":"10.1016/j.proci.2025.105838","DOIUrl":null,"url":null,"abstract":"<div><div>Wall modelling of turbulent reacting flows is crucial for applications such as aero-engine simulations. The velocity-scalar probability density function (PDF) method has proven effective for modelling flames in complex combustion regimes, but its application near walls is computationally expensive due to the need for wall-resolving grids, even with the aid of adaptive mesh refinement. This study aims to reduce computational cost by employing a modern wall model in large eddy simulations (LES). We demonstrate that a simple subgrid model is sufficient for a wide range of wall distances, though modification to the stochastic forcing is needed to prevent spurious pressure formation near walls. The proposed wall-modelled stochastic fields framework significantly improves upon existing methods without wall modelling. It also highlights the potential for cost savings by using wall-modelled LES-PDF. For this purpose, the Eulerian stochastic fields framework is particularly suited as it can integrate with most existing LES wall models with minimal modifications.</div></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"41 ","pages":"Article 105838"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1540748925000525","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Wall modelling of turbulent reacting flows is crucial for applications such as aero-engine simulations. The velocity-scalar probability density function (PDF) method has proven effective for modelling flames in complex combustion regimes, but its application near walls is computationally expensive due to the need for wall-resolving grids, even with the aid of adaptive mesh refinement. This study aims to reduce computational cost by employing a modern wall model in large eddy simulations (LES). We demonstrate that a simple subgrid model is sufficient for a wide range of wall distances, though modification to the stochastic forcing is needed to prevent spurious pressure formation near walls. The proposed wall-modelled stochastic fields framework significantly improves upon existing methods without wall modelling. It also highlights the potential for cost savings by using wall-modelled LES-PDF. For this purpose, the Eulerian stochastic fields framework is particularly suited as it can integrate with most existing LES wall models with minimal modifications.
近壁节理速度-标量PDF法的性能研究
紊流反应流动的壁面建模对于航空发动机模拟等应用至关重要。速度-标量概率密度函数(PDF)方法已被证明对复杂燃烧状态下的火焰建模是有效的,但由于需要壁面解析网格,即使借助自适应网格细化,其在壁面附近的应用计算成本也很高。本研究旨在通过在大涡模拟(LES)中采用现代壁面模型来降低计算成本。我们证明了一个简单的子网格模型足以适应大范围的壁面距离,尽管需要对随机强迫进行修改以防止壁面附近的虚假压力形成。所提出的壁面建模随机场框架显著改进了现有的无壁面建模方法。它还强调了使用壁式LES-PDF节省成本的潜力。为此,欧拉随机场框架特别适合,因为它可以与大多数现有的LES壁模型进行最小的修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proceedings of the Combustion Institute
Proceedings of the Combustion Institute 工程技术-工程:化工
CiteScore
7.00
自引率
0.00%
发文量
420
审稿时长
3.0 months
期刊介绍: The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review. Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信