Optimizing the Reliability of Bi2Te3-Based Thermoelectric Generators with Asymmetric Structures under Large Temperature Difference

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Weiqiang Cao, , , Jianan Lyu*, , , Ziao Wang, , , Bachir Melzi, , , Yonggao Yan, , , Dongwang Yang*, , and , Xinfeng Tang*, 
{"title":"Optimizing the Reliability of Bi2Te3-Based Thermoelectric Generators with Asymmetric Structures under Large Temperature Difference","authors":"Weiqiang Cao,&nbsp;, ,&nbsp;Jianan Lyu*,&nbsp;, ,&nbsp;Ziao Wang,&nbsp;, ,&nbsp;Bachir Melzi,&nbsp;, ,&nbsp;Yonggao Yan,&nbsp;, ,&nbsp;Dongwang Yang*,&nbsp;, and ,&nbsp;Xinfeng Tang*,&nbsp;","doi":"10.1021/acsaelm.5c01475","DOIUrl":null,"url":null,"abstract":"<p >The thermoelectric (TE) recovery technology for industrial waste heat is crucial for improving energy utilization efficiency. Currently, commercial Bi<sub>2</sub>Te<sub>3</sub>-based thermoelectric generators (TEGs) show significant reliability issues when operating under large temperature differences (<i>T</i><sub>h</sub> &gt; 200 °C, Δ<i>T</i> &gt; 150 °C). This is primarily due to the accumulation of interfacial thermal stress resulting from traditional rigid structural designs and material degradation at high temperatures. In this work, we improve two TEG structures: B-TEG (symmetrically modified with thermal conductive adhesive) and C-TEG (asymmetric design using arc-sprayed Zn/Al electrodes). Finite element simulations indicate that under thermal shock (from 100 °C to 250 °C), B-TEG can reduce interfacial stress by 78% compared to traditional rigidly bonded TEGs (A-TEG). Excellent stability was confirmed through 2000 thermal cycles and 1000 h of aging tests. The AC resistance (ACR) change rate of C-TEG is only 0.90%, outperforming B-TEG (1.28%) and A-TEG (which experienced 100% failure). Microstructural analysis (SEM/TEM) confirms that the arc-sprayed Ni layer forms an active NiBi<sub>3</sub> phase at the interface, effectively suppressing crack propagation and interelement diffusion. The asymmetric design of C-TEG, combined with scalable arc spraying manufacturing, provides a robust solution for enhancing TEG reliability in extreme thermal environments.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 18","pages":"8609–8617"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c01475","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The thermoelectric (TE) recovery technology for industrial waste heat is crucial for improving energy utilization efficiency. Currently, commercial Bi2Te3-based thermoelectric generators (TEGs) show significant reliability issues when operating under large temperature differences (Th > 200 °C, ΔT > 150 °C). This is primarily due to the accumulation of interfacial thermal stress resulting from traditional rigid structural designs and material degradation at high temperatures. In this work, we improve two TEG structures: B-TEG (symmetrically modified with thermal conductive adhesive) and C-TEG (asymmetric design using arc-sprayed Zn/Al electrodes). Finite element simulations indicate that under thermal shock (from 100 °C to 250 °C), B-TEG can reduce interfacial stress by 78% compared to traditional rigidly bonded TEGs (A-TEG). Excellent stability was confirmed through 2000 thermal cycles and 1000 h of aging tests. The AC resistance (ACR) change rate of C-TEG is only 0.90%, outperforming B-TEG (1.28%) and A-TEG (which experienced 100% failure). Microstructural analysis (SEM/TEM) confirms that the arc-sprayed Ni layer forms an active NiBi3 phase at the interface, effectively suppressing crack propagation and interelement diffusion. The asymmetric design of C-TEG, combined with scalable arc spraying manufacturing, provides a robust solution for enhancing TEG reliability in extreme thermal environments.

Abstract Image

大温差下非对称结构bi2te3基热电发电机可靠性优化
工业余热热电回收技术是提高能源利用效率的关键技术。目前,基于bi2te3的商用热电发电机(teg)在大温差(Th > 200°C, ΔT > 150°C)下运行时存在显著的可靠性问题。这主要是由于传统的刚性结构设计和材料在高温下的降解导致界面热应力的积累。在这项工作中,我们改进了两种TEG结构:B-TEG(用导热胶对称修饰)和C-TEG(使用电弧喷涂Zn/Al电极的不对称设计)。有限元模拟表明,在热冲击(从100°C到250°C)下,与传统的刚性粘合teg (A-TEG)相比,B-TEG可以将界面应力降低78%。通过2000次热循环和1000 h老化试验,证实了优异的稳定性。C-TEG的交流电阻(ACR)变化率仅为0.90%,优于B-TEG(1.28%)和A-TEG(100%)。显微组织分析(SEM/TEM)证实,弧喷Ni层在界面处形成活性NiBi3相,有效抑制了裂纹扩展和元素间扩散。C-TEG的非对称设计与可扩展电弧喷涂制造相结合,为提高极端热环境下TEG的可靠性提供了强大的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信