Ion Cross-Linked High-Strength and Toughness Multinetwork Ionic Organic Hydrogels for Flexible Electronic Devices

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Lingling Meng*, , , Liu Da, , , Liu En, , , Wu Ze, , and , Miao Xu, 
{"title":"Ion Cross-Linked High-Strength and Toughness Multinetwork Ionic Organic Hydrogels for Flexible Electronic Devices","authors":"Lingling Meng*,&nbsp;, ,&nbsp;Liu Da,&nbsp;, ,&nbsp;Liu En,&nbsp;, ,&nbsp;Wu Ze,&nbsp;, and ,&nbsp;Miao Xu,&nbsp;","doi":"10.1021/acsaelm.5c01252","DOIUrl":null,"url":null,"abstract":"<p >Because traditional ionic conductive hydrogels cannot simultaneously exhibit excellent tensile properties, strong conductivity, and high sensitivity, their application in the field of flexible electronic devices is limited. To address this issue, this paper proposes a simple one-pot method to prepare multinetwork ionic organic hydrogels. Here, poly(vinyl alcohol) (PVA), acrylamide (AM), hydroxyethyl cellulose (HEC), sodium alginate (SA), and zinc chloride (ZnCl<sub>2</sub>) are dissolved in a dimethyl sulfoxide-water mixture (DMSO/H<sub>2</sub>O). First, through photopolymerization of free radicals, PAM long chains form the first layer of a chemically cross-linked network. Subsequently, the SA molecular chain chelates and coordinates with Zn<sup>2+</sup> to construct a second layer of an ion cross-linked network. Finally, during the continuous freeze–thaw process, PVA molecular chains form a third layer of a physically cross-linked network. The resulting multinetwork ionic organic hydrogel demonstrates excellent tensile properties (330%, 1.26 MPa), good conductivity (3.21 S/m), high sensitivity (GF can reach 8.19), a stable resistance temperature coefficient (TCR of 0.682/°C), and working stability in different pH environments. Therefore, the hydrogel can be successfully applied in flexible strain sensors, supercapacitors, and friction nanogenerators to enable motion monitoring, traceless writing, electric energy storage, and energy conversion. This work provides a novel approach for the application of ionic organic hydrogels in future flexible electronic devices.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 18","pages":"8476–8491"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c01252","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Because traditional ionic conductive hydrogels cannot simultaneously exhibit excellent tensile properties, strong conductivity, and high sensitivity, their application in the field of flexible electronic devices is limited. To address this issue, this paper proposes a simple one-pot method to prepare multinetwork ionic organic hydrogels. Here, poly(vinyl alcohol) (PVA), acrylamide (AM), hydroxyethyl cellulose (HEC), sodium alginate (SA), and zinc chloride (ZnCl2) are dissolved in a dimethyl sulfoxide-water mixture (DMSO/H2O). First, through photopolymerization of free radicals, PAM long chains form the first layer of a chemically cross-linked network. Subsequently, the SA molecular chain chelates and coordinates with Zn2+ to construct a second layer of an ion cross-linked network. Finally, during the continuous freeze–thaw process, PVA molecular chains form a third layer of a physically cross-linked network. The resulting multinetwork ionic organic hydrogel demonstrates excellent tensile properties (330%, 1.26 MPa), good conductivity (3.21 S/m), high sensitivity (GF can reach 8.19), a stable resistance temperature coefficient (TCR of 0.682/°C), and working stability in different pH environments. Therefore, the hydrogel can be successfully applied in flexible strain sensors, supercapacitors, and friction nanogenerators to enable motion monitoring, traceless writing, electric energy storage, and energy conversion. This work provides a novel approach for the application of ionic organic hydrogels in future flexible electronic devices.

Abstract Image

柔性电子器件用离子交联高强度韧性多网络离子有机水凝胶
由于传统离子导电水凝胶不能同时具有优异的拉伸性能、强导电性和高灵敏度,限制了其在柔性电子器件领域的应用。针对这一问题,本文提出了一种简单的一锅法制备多网络离子有机水凝胶的方法。在这里,聚乙烯醇(PVA)、丙烯酰胺(AM)、羟乙基纤维素(HEC)、海藻酸钠(SA)和氯化锌(ZnCl2)溶解在二甲亚砜-水混合物(DMSO/H2O)中。首先,通过自由基的光聚合,PAM长链形成化学交联网络的第一层。随后,SA分子链与Zn2+螯合配位,构建第二层离子交联网络。最后,在连续的冻融过程中,PVA分子链形成了物理交联网络的第三层。所制得的多网络离子有机水凝胶具有优异的拉伸性能(330%,1.26 MPa)、良好的电导率(3.21 S/m)、高灵敏度(GF可达8.19)、稳定的电阻温度系数(TCR为0.682/℃)和在不同pH环境下的工作稳定性。因此,水凝胶可以成功地应用于柔性应变传感器、超级电容器和摩擦纳米发电机中,以实现运动监测、无迹写入、电能存储和能量转换。这项工作为离子有机水凝胶在未来柔性电子器件中的应用提供了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信