{"title":"Emerging Thermal Safety Characteristics of Large-Capacity Lithium Iron Phosphate Lithium-Ion Batteries","authors":"Kai Chen, Dian Zhang, Xin Shen, Xuning Feng, Xin-Bing Cheng, Yuping Wu","doi":"10.1002/aenm.202503248","DOIUrl":null,"url":null,"abstract":"Lithium iron phosphate is generally considered to be one of the most thermally stable cathode materials for commercial lithium-ion batteries, while emerging thermal safety characteristics rise with the large-capacity lithium-ion batteries in large-scale stationary energy storage power stations. In this review, different safety risks of lithium iron phosphate batteries compared with lithium nickel manganese cobalt oxide batteries from the view of general features of thermal runaway and the content of extremely dangerous hydrogen are discussed, especially the emerging thermal safety characteristics for large-capacity lithium-ion batteries. First, the prevailing belief that lithium iron phosphate is safer than lithium nickel manganese cobalt oxide is discussed based on the general features of thermal runaway, including characteristic temperature, heat generation, mass loss, and combustion possibility. Second, the rising viewpoint that the hydrogen content in the thermal runaway of lithium iron phosphate batteries is higher than that of lithium nickel manganese cobalt oxide batteries is examined. More importantly, different thermal behaviors are strongly related to the battery capacity (ampere hour). Additionally, the solutions to reduce hydrogen generation in lithium-ion batteries are presented in the outlook. This review presents comprehensive insights into the thermal safety behaviors of the commercial lithium-ion batteries with lithium iron phosphate cathodes.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"190 1","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202503248","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium iron phosphate is generally considered to be one of the most thermally stable cathode materials for commercial lithium-ion batteries, while emerging thermal safety characteristics rise with the large-capacity lithium-ion batteries in large-scale stationary energy storage power stations. In this review, different safety risks of lithium iron phosphate batteries compared with lithium nickel manganese cobalt oxide batteries from the view of general features of thermal runaway and the content of extremely dangerous hydrogen are discussed, especially the emerging thermal safety characteristics for large-capacity lithium-ion batteries. First, the prevailing belief that lithium iron phosphate is safer than lithium nickel manganese cobalt oxide is discussed based on the general features of thermal runaway, including characteristic temperature, heat generation, mass loss, and combustion possibility. Second, the rising viewpoint that the hydrogen content in the thermal runaway of lithium iron phosphate batteries is higher than that of lithium nickel manganese cobalt oxide batteries is examined. More importantly, different thermal behaviors are strongly related to the battery capacity (ampere hour). Additionally, the solutions to reduce hydrogen generation in lithium-ion batteries are presented in the outlook. This review presents comprehensive insights into the thermal safety behaviors of the commercial lithium-ion batteries with lithium iron phosphate cathodes.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.