Efficient deep-blue LEDs based on colloidal CsPbBr3 nanoplatelets meeting the Rec.2020 standard.

IF 23.4 Q1 OPTICS
Yusheng Song,Sheng Cao,Yijie Wang,Mingyan Chen,Yu Zhang,Qiuyan Li,Shulin Han,Yi Liang,Lei Cai,Jialong Zhao,Bingsuo Zou
{"title":"Efficient deep-blue LEDs based on colloidal CsPbBr3 nanoplatelets meeting the Rec.2020 standard.","authors":"Yusheng Song,Sheng Cao,Yijie Wang,Mingyan Chen,Yu Zhang,Qiuyan Li,Shulin Han,Yi Liang,Lei Cai,Jialong Zhao,Bingsuo Zou","doi":"10.1038/s41377-025-02019-1","DOIUrl":null,"url":null,"abstract":"Colloidally quantum-confined CsPbBr3 nanoplatelets (NPLs) exhibit narrow emission linewidths and thickness-tunable photoluminescence, making them ideal candidates for deep-blue perovskite light-emitting diodes (PeLEDs). However, the weak surface coordination of conventional long-chain ligands (e.g., oleylamine and oleic acid) leads to face-to-face stacking of the NPLs, resulting in undesirable emission redshifts in their PeLEDs. Herein, we report an efficient deep-blue PeLED based on colloidal CsPbBr3 NPLs that meet the Rec.2020 color standard, enabled by an acid-assisted ligand passivation strategy. Surface chemical analysis reveals that hydrobromic acid facilitates proton-assisted stripping of the long-chain ligands, followed by the formation of stable Pb-S-P coordination bonds with thio-tributylphosphine, which exhibits a high adsorption energy (Eads = -1.13 eV). This approach significantly improves surface defect passivation, yielding a photoluminescence quantum yield of 96% and a narrow 13 nm full-width-at-half-maximum deep-blue emission. Enhanced exciton recombination and reduced defect state density are evidenced by a prolonged photoluminescence lifetime and slower absorption bleach recovery kinetics. The resulting PeLEDs achieve record-breaking performance among CsPbBr3 NPL-based systems, with a maximum external quantum efficiency of 6.81% at 461 nm, a peak luminance of 143 cd m-2, and the CIE color coordinates (CIE-y = 0.046) that comply with Rec.2020 standards. This work presents an effective strategy for developing efficient and stable deep-blue perovskite emitters, demonstrating significant potential for the commercialization of perovskite nanomaterials in next-generation ultra-high-definition displays.","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"19 1","pages":"336"},"PeriodicalIF":23.4000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-02019-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Colloidally quantum-confined CsPbBr3 nanoplatelets (NPLs) exhibit narrow emission linewidths and thickness-tunable photoluminescence, making them ideal candidates for deep-blue perovskite light-emitting diodes (PeLEDs). However, the weak surface coordination of conventional long-chain ligands (e.g., oleylamine and oleic acid) leads to face-to-face stacking of the NPLs, resulting in undesirable emission redshifts in their PeLEDs. Herein, we report an efficient deep-blue PeLED based on colloidal CsPbBr3 NPLs that meet the Rec.2020 color standard, enabled by an acid-assisted ligand passivation strategy. Surface chemical analysis reveals that hydrobromic acid facilitates proton-assisted stripping of the long-chain ligands, followed by the formation of stable Pb-S-P coordination bonds with thio-tributylphosphine, which exhibits a high adsorption energy (Eads = -1.13 eV). This approach significantly improves surface defect passivation, yielding a photoluminescence quantum yield of 96% and a narrow 13 nm full-width-at-half-maximum deep-blue emission. Enhanced exciton recombination and reduced defect state density are evidenced by a prolonged photoluminescence lifetime and slower absorption bleach recovery kinetics. The resulting PeLEDs achieve record-breaking performance among CsPbBr3 NPL-based systems, with a maximum external quantum efficiency of 6.81% at 461 nm, a peak luminance of 143 cd m-2, and the CIE color coordinates (CIE-y = 0.046) that comply with Rec.2020 standards. This work presents an effective strategy for developing efficient and stable deep-blue perovskite emitters, demonstrating significant potential for the commercialization of perovskite nanomaterials in next-generation ultra-high-definition displays.
基于胶体CsPbBr3纳米薄片的高效深蓝led符合Rec.2020标准。
胶体量子限制的CsPbBr3纳米薄片(NPLs)具有窄的发射线宽和厚度可调的光致发光特性,使其成为深蓝色钙钛矿发光二极管(PeLEDs)的理想候选材料。然而,传统的长链配体(例如,油胺和油酸)的弱表面配位导致不良物质的正面堆积,导致不良物质的发光红移。在此,我们报道了一种基于胶体CsPbBr3 NPLs的高效深蓝PeLED,该PeLED通过酸辅助配体钝化策略实现,符合Rec.2020颜色标准。表面化学分析表明,氢溴酸有利于质子辅助剥离长链配体,与硫代三丁基膦形成稳定的Pb-S-P配位键,具有较高的吸附能(Eads = -1.13 eV)。这种方法显著改善了表面缺陷钝化,产生了96%的光致发光量子产率和半最大全宽13 nm的窄深蓝发射。增强的激子重组和降低的缺陷态密度证明了延长的光致发光寿命和较慢的吸收漂白剂恢复动力学。由此产生的pled在基于CsPbBr3 npl的系统中实现了破纪录的性能,在461 nm处的最大外部量子效率为6.81%,峰值亮度为143 cd m-2, CIE颜色坐标(CIE-y = 0.046)符合Rec.2020标准。这项工作为开发高效稳定的深蓝色钙钛矿发射器提供了有效的策略,展示了钙钛矿纳米材料在下一代超高清显示器中的商业化潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信