{"title":"Efficient deep-blue LEDs based on colloidal CsPbBr3 nanoplatelets meeting the Rec.2020 standard.","authors":"Yusheng Song,Sheng Cao,Yijie Wang,Mingyan Chen,Yu Zhang,Qiuyan Li,Shulin Han,Yi Liang,Lei Cai,Jialong Zhao,Bingsuo Zou","doi":"10.1038/s41377-025-02019-1","DOIUrl":null,"url":null,"abstract":"Colloidally quantum-confined CsPbBr3 nanoplatelets (NPLs) exhibit narrow emission linewidths and thickness-tunable photoluminescence, making them ideal candidates for deep-blue perovskite light-emitting diodes (PeLEDs). However, the weak surface coordination of conventional long-chain ligands (e.g., oleylamine and oleic acid) leads to face-to-face stacking of the NPLs, resulting in undesirable emission redshifts in their PeLEDs. Herein, we report an efficient deep-blue PeLED based on colloidal CsPbBr3 NPLs that meet the Rec.2020 color standard, enabled by an acid-assisted ligand passivation strategy. Surface chemical analysis reveals that hydrobromic acid facilitates proton-assisted stripping of the long-chain ligands, followed by the formation of stable Pb-S-P coordination bonds with thio-tributylphosphine, which exhibits a high adsorption energy (Eads = -1.13 eV). This approach significantly improves surface defect passivation, yielding a photoluminescence quantum yield of 96% and a narrow 13 nm full-width-at-half-maximum deep-blue emission. Enhanced exciton recombination and reduced defect state density are evidenced by a prolonged photoluminescence lifetime and slower absorption bleach recovery kinetics. The resulting PeLEDs achieve record-breaking performance among CsPbBr3 NPL-based systems, with a maximum external quantum efficiency of 6.81% at 461 nm, a peak luminance of 143 cd m-2, and the CIE color coordinates (CIE-y = 0.046) that comply with Rec.2020 standards. This work presents an effective strategy for developing efficient and stable deep-blue perovskite emitters, demonstrating significant potential for the commercialization of perovskite nanomaterials in next-generation ultra-high-definition displays.","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"19 1","pages":"336"},"PeriodicalIF":23.4000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-02019-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Colloidally quantum-confined CsPbBr3 nanoplatelets (NPLs) exhibit narrow emission linewidths and thickness-tunable photoluminescence, making them ideal candidates for deep-blue perovskite light-emitting diodes (PeLEDs). However, the weak surface coordination of conventional long-chain ligands (e.g., oleylamine and oleic acid) leads to face-to-face stacking of the NPLs, resulting in undesirable emission redshifts in their PeLEDs. Herein, we report an efficient deep-blue PeLED based on colloidal CsPbBr3 NPLs that meet the Rec.2020 color standard, enabled by an acid-assisted ligand passivation strategy. Surface chemical analysis reveals that hydrobromic acid facilitates proton-assisted stripping of the long-chain ligands, followed by the formation of stable Pb-S-P coordination bonds with thio-tributylphosphine, which exhibits a high adsorption energy (Eads = -1.13 eV). This approach significantly improves surface defect passivation, yielding a photoluminescence quantum yield of 96% and a narrow 13 nm full-width-at-half-maximum deep-blue emission. Enhanced exciton recombination and reduced defect state density are evidenced by a prolonged photoluminescence lifetime and slower absorption bleach recovery kinetics. The resulting PeLEDs achieve record-breaking performance among CsPbBr3 NPL-based systems, with a maximum external quantum efficiency of 6.81% at 461 nm, a peak luminance of 143 cd m-2, and the CIE color coordinates (CIE-y = 0.046) that comply with Rec.2020 standards. This work presents an effective strategy for developing efficient and stable deep-blue perovskite emitters, demonstrating significant potential for the commercialization of perovskite nanomaterials in next-generation ultra-high-definition displays.