Lean-Water Gel Electrolyte Enables Zinc Ion Battery at -70 °C.

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zeping Liu,Yu Zhang,Meng Li,Haoran Li,Jiachi Zhang,Yu Zhao,Guangning Xu,Jie Hu,Tiesong Lin,Naiqing Zhang
{"title":"Lean-Water Gel Electrolyte Enables Zinc Ion Battery at -70 °C.","authors":"Zeping Liu,Yu Zhang,Meng Li,Haoran Li,Jiachi Zhang,Yu Zhao,Guangning Xu,Jie Hu,Tiesong Lin,Naiqing Zhang","doi":"10.1002/anie.202511520","DOIUrl":null,"url":null,"abstract":"Aqueous zinc ion batteries are attracting growing interest in electrochemical energy storage due to safety, reliability, and affordability. However, water brings drawbacks including parasitic reactions, narrow electrochemical window, and cathode degradation. The freezing nature of water also challenges the zinc ion transport and storage at sub-zero temperatures, especially below -40 °C. Here, we design a water-in-polymer electrolyte to confine water using a weak-solvation monomer-directed polymerization technique initiated by protons. This electrolyte strategy significantly suppresses the water-induced parasitic reactions and widens the electrochemical window to 2.59 V. Besides, a high ionic conductivity of 0.36 mS cm-1 is achieved at -70 °C benefiting from unique fast ion transport channel and favorable desolvation process at the interface. Symmetric Zn cells exhibit excellent cycle stability over 10 000 h (437 days) at room temperature (1 mA cm-2@1 mAh cm-2) and 700 h at -40 °C (5.25 mA cm-2@5.25 mAh cm-2). Zn||Zn0.58V2O5 full cells show impressive performance under high mass loading and low temperatures originating from the suppression of H+ insertion. The electrolyte strategy in this work will inspire more efforts for water confinement in aqueous batteries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"99 1","pages":"e202511520"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202511520","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc ion batteries are attracting growing interest in electrochemical energy storage due to safety, reliability, and affordability. However, water brings drawbacks including parasitic reactions, narrow electrochemical window, and cathode degradation. The freezing nature of water also challenges the zinc ion transport and storage at sub-zero temperatures, especially below -40 °C. Here, we design a water-in-polymer electrolyte to confine water using a weak-solvation monomer-directed polymerization technique initiated by protons. This electrolyte strategy significantly suppresses the water-induced parasitic reactions and widens the electrochemical window to 2.59 V. Besides, a high ionic conductivity of 0.36 mS cm-1 is achieved at -70 °C benefiting from unique fast ion transport channel and favorable desolvation process at the interface. Symmetric Zn cells exhibit excellent cycle stability over 10 000 h (437 days) at room temperature (1 mA cm-2@1 mAh cm-2) and 700 h at -40 °C (5.25 mA cm-2@5.25 mAh cm-2). Zn||Zn0.58V2O5 full cells show impressive performance under high mass loading and low temperatures originating from the suppression of H+ insertion. The electrolyte strategy in this work will inspire more efforts for water confinement in aqueous batteries.
稀水凝胶电解质使锌离子电池在-70°C下工作。
水性锌离子电池由于其安全性、可靠性和可负担性,在电化学储能领域引起了越来越多的兴趣。然而,水的缺点包括寄生反应、电化学窗口窄、阴极降解等。水的冻结性质也对锌离子在零下温度下的运输和储存提出了挑战,特别是在零下40°C以下。在这里,我们设计了一种聚合物中的水电解质,使用质子引发的弱溶剂化单体定向聚合技术来限制水。这种电解质策略显著抑制了水诱导的寄生反应,并将电化学窗口扩大到2.59 V。此外,由于独特的快速离子传输通道和良好的界面脱溶过程,在-70℃下离子电导率达到0.36 mS cm-1。对称锌电池在室温(1 mA cm-2@1 mAh cm-2)和-40°C (5.25 mA cm-2@5.25 mAh cm-2)下的循环稳定性分别超过10,000 h(437天)和700 h。Zn||Zn0.58V2O5电池在高质量负载和低温条件下表现出优异的性能。这项工作的电解质策略将激发更多的水约束在水性电池的努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信