{"title":"A bottom-up septal inhibitory circuit mediates anticipatory control of drinking.","authors":"Lingyu Xu,Yuhao Sun,Chenyuan Huang,Yanrong Zheng,Jialu Chen,Xiaolong Ma,Qiujie Shi,Mengting Liu,Xiaoyun Qiu,Qikun Zhao,Chenshu Gao,Jie Liao,Yi Wang,Zhong Chen","doi":"10.1038/s41593-025-02056-4","DOIUrl":null,"url":null,"abstract":"Drinking behavior is not only homeostatically regulated but also rapidly adjusted before any changes in blood osmolality occur, known as anticipatory thirst satiation. Homeostatic and anticipatory signals converge in the subfornical organ (SFO); however, the neural pathways conveying peripheral information to the SFO before changes in blood composition are incompletely understood. Here we reveal an inhibitory pathway from the medial septum (MS) to the SFO that is involved in the control of anticipatory drinking behavior in mice. MS γ-aminobutyric acid (GABA)ergic neurons encode water-satiation signals by integrating cues from the oral cavity and tracking gastrointestinal signals. These neurons receive inputs from the parabrachial nucleus and relay to SFOCaMKII neurons, forming a bottom-up pathway with activity that prevents overhydration. Disruption of this circuit leads to excessive water intake and hyponatremia. Our findings reveal a septal pathway that integrates multiple layers of presystemic signals to fine-tune drinking behavior.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"24 1","pages":""},"PeriodicalIF":20.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-025-02056-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Drinking behavior is not only homeostatically regulated but also rapidly adjusted before any changes in blood osmolality occur, known as anticipatory thirst satiation. Homeostatic and anticipatory signals converge in the subfornical organ (SFO); however, the neural pathways conveying peripheral information to the SFO before changes in blood composition are incompletely understood. Here we reveal an inhibitory pathway from the medial septum (MS) to the SFO that is involved in the control of anticipatory drinking behavior in mice. MS γ-aminobutyric acid (GABA)ergic neurons encode water-satiation signals by integrating cues from the oral cavity and tracking gastrointestinal signals. These neurons receive inputs from the parabrachial nucleus and relay to SFOCaMKII neurons, forming a bottom-up pathway with activity that prevents overhydration. Disruption of this circuit leads to excessive water intake and hyponatremia. Our findings reveal a septal pathway that integrates multiple layers of presystemic signals to fine-tune drinking behavior.
期刊介绍:
Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority.
The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests.
In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.