Separation and purification of 5-hydroxymethylfurfural by metal‒organic frameworks

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Lei Wang, Hailong He, Lulu Deng, Yuhao Luo, Qiang Liu, Xiaoying Zhu
{"title":"Separation and purification of 5-hydroxymethylfurfural by metal‒organic frameworks","authors":"Lei Wang, Hailong He, Lulu Deng, Yuhao Luo, Qiang Liu, Xiaoying Zhu","doi":"10.1039/d5ta05030h","DOIUrl":null,"url":null,"abstract":"5-Hydroxymethylfurfural (HMF) is an important sugar-based platform chemical that can be produced from fructose by acid-catalyzed dehydration. However, the efficient removal of by-products formic acid (FA), levulinic acid (LA) and residual fructose to obtain high purity HMF remains a challenge, especially the separation of LA and HMF. Herein, by introducing coordination interaction, we effectively separated HMF from impurities. MOF-808 selectively adsorbed the impurity components with high adsorption capacity and selectivity factor for Fru (238 mg/gads, 43.8), FA (174 mg/gads, 53.5), and LA (325 mg/gads, 43.8). Moreover, the adsorption kinetic constants for MOF-808 on FA and LA could reach remarkably high values of 58.0 h-1 and 25.9 h-1, respectively. The efficient adsorption separation performance of MOF-808 is attributed to its abundant unsaturated paired sites and hard Lewis acidity. Additionally, in practical column separation, MOF-808 showed outstanding separation performance and cycling stability. This study indicates coordination interactions are effective for the separation and purification of HMF.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"41 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ta05030h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

5-Hydroxymethylfurfural (HMF) is an important sugar-based platform chemical that can be produced from fructose by acid-catalyzed dehydration. However, the efficient removal of by-products formic acid (FA), levulinic acid (LA) and residual fructose to obtain high purity HMF remains a challenge, especially the separation of LA and HMF. Herein, by introducing coordination interaction, we effectively separated HMF from impurities. MOF-808 selectively adsorbed the impurity components with high adsorption capacity and selectivity factor for Fru (238 mg/gads, 43.8), FA (174 mg/gads, 53.5), and LA (325 mg/gads, 43.8). Moreover, the adsorption kinetic constants for MOF-808 on FA and LA could reach remarkably high values of 58.0 h-1 and 25.9 h-1, respectively. The efficient adsorption separation performance of MOF-808 is attributed to its abundant unsaturated paired sites and hard Lewis acidity. Additionally, in practical column separation, MOF-808 showed outstanding separation performance and cycling stability. This study indicates coordination interactions are effective for the separation and purification of HMF.
金属-有机框架分离纯化5-羟甲基糠醛
5-羟甲基糠醛(HMF)是一种重要的糖基平台化学物质,可以通过酸催化脱水从果糖中生产。然而,如何高效去除副产物甲酸(FA)、乙酰丙酸(LA)和残留果糖以获得高纯度HMF仍然是一个挑战,特别是LA和HMF的分离。本文通过引入配位相互作用,有效地分离了HMF和杂质。MOF-808选择性吸附杂质组分,对Fru (238 mg/gads, 43.8)、FA (174 mg/gads, 53.5)和LA (325 mg/gads, 43.8)具有较高的吸附量和选择性因子。MOF-808在FA和LA上的吸附动力学常数可分别达到58.0 h-1和25.9 h-1。MOF-808的高效吸附分离性能主要归功于其丰富的不饱和配对位点和硬刘易斯酸性。此外,在实际的柱分离中,MOF-808表现出优异的分离性能和循环稳定性。研究表明配位相互作用对HMF的分离纯化是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信