Yu Cao, Yang Zhao, Tan Deng, Qigang Zhou, Gang Hu, Zhuang-Li Hu, Yan-Yi Jiang, Xiao-Han Yang, Fang Wang, Peng-Fei Wu, Jian-Guo Chen
{"title":"Hepatic acetyl-CoA metabolism modulates neuroinflammation and depression susceptibility via acetate","authors":"Yu Cao, Yang Zhao, Tan Deng, Qigang Zhou, Gang Hu, Zhuang-Li Hu, Yan-Yi Jiang, Xiao-Han Yang, Fang Wang, Peng-Fei Wu, Jian-Guo Chen","doi":"10.1016/j.cmet.2025.08.010","DOIUrl":null,"url":null,"abstract":"Extensive research highlights impaired brain energy metabolism in neuropsychiatric disorders, whereas much less is known about the role of the peripheral metabolic state. The liver is the metabolic hub, and herein we demonstrate that hepatic hydrolysis of acetyl-coenzyme A, a central metabolic intermediate, signals the brain and helps buffer stress. Using a chronic social defeat stress paradigm in male mice, we observed a hepatic glucose-to-acetate metabolic switch, followed by a glucocorticoid-repressed transcription of the acetyl-coenzyme A hydrolase, acetyl-coenzyme A thioesterase 12, to confer stress vulnerability. Hepatic overexpression of acetyl-coenzyme A thioesterase 12 alleviated depression-like phenotypes via increasing acetate output to promote histone acetylation in the ventral hippocampus, which bolstered the expression of programmed cell death ligand 1 in astrocytes, limiting neuroinflammation and rescuing inhibitory synaptic transmission dysfunction. Our findings demonstrate that hepatic acetyl-coenzyme A hydrolysis serves as a key liver-brain axis component that regulates depression susceptibility.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"56 1","pages":""},"PeriodicalIF":30.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2025.08.010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Extensive research highlights impaired brain energy metabolism in neuropsychiatric disorders, whereas much less is known about the role of the peripheral metabolic state. The liver is the metabolic hub, and herein we demonstrate that hepatic hydrolysis of acetyl-coenzyme A, a central metabolic intermediate, signals the brain and helps buffer stress. Using a chronic social defeat stress paradigm in male mice, we observed a hepatic glucose-to-acetate metabolic switch, followed by a glucocorticoid-repressed transcription of the acetyl-coenzyme A hydrolase, acetyl-coenzyme A thioesterase 12, to confer stress vulnerability. Hepatic overexpression of acetyl-coenzyme A thioesterase 12 alleviated depression-like phenotypes via increasing acetate output to promote histone acetylation in the ventral hippocampus, which bolstered the expression of programmed cell death ligand 1 in astrocytes, limiting neuroinflammation and rescuing inhibitory synaptic transmission dysfunction. Our findings demonstrate that hepatic acetyl-coenzyme A hydrolysis serves as a key liver-brain axis component that regulates depression susceptibility.
期刊介绍:
Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others.
Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.