Synergistic Catalysis of Pt‐Based High‐Entropy Clusters Coupled with Super‐Hydrophilic CeO2 Enables Efficient Anion Exchange Membrane Water Electrolysis

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Huanyong Wang, Xinqiang Wang, Fan Gao, Jingbo Chen, Xiangrong Ren, Zichao Shen, Ke Wang, Fulai Qi, Yanxia Liu, Yong Gao, Yaxiong Yang, Dingsheng Wang, Zhenglong Li, Wengang Cui, Hongge Pan
{"title":"Synergistic Catalysis of Pt‐Based High‐Entropy Clusters Coupled with Super‐Hydrophilic CeO2 Enables Efficient Anion Exchange Membrane Water Electrolysis","authors":"Huanyong Wang, Xinqiang Wang, Fan Gao, Jingbo Chen, Xiangrong Ren, Zichao Shen, Ke Wang, Fulai Qi, Yanxia Liu, Yong Gao, Yaxiong Yang, Dingsheng Wang, Zhenglong Li, Wengang Cui, Hongge Pan","doi":"10.1002/adma.202514269","DOIUrl":null,"url":null,"abstract":"Simultaneously enhancing the intrinsic activity and accelerating H<jats:sub>2</jats:sub>O dissociation kinetics is crucial for developing advanced low‐Pt electrocatalysts for the alkaline hydrogen evolution reaction (HER). Herein, a low‐noble‐metal Pt‐based high‐entropy alloy clusters coupled with super‐hydrophilic CeO<jats:sub>2</jats:sub> on porous carbon support (Pt‐HEA‐cluster/CeO<jats:sub>2</jats:sub>/C) is developed. The optimized Pt‐HEA‐cluster/CeO<jats:sub>2</jats:sub>/C catalyst exhibits the faster Volmer‐Tafel mechanism with an exceptionally low overpotential of 12.3 mV at −10 mA cm<jats:sup>−2</jats:sup> in 1.0 <jats:sc>m</jats:sc> KOH, surpassing the benchmark commercial Pt/C (32.2 mV). When integrated into an anion exchange membrane water electrolysis, the system achieves low cell voltages of 1.74 V at 1 A cm<jats:sup>−2</jats:sup>, and can maintain its performance for at least 500 h at an industrial‐level current density. Operando spectroscopy and density functional theory calculations reveal that H<jats:sub>2</jats:sub>O preferentially adsorbs on Ce site of CeO<jats:sub>2</jats:sub>, while the interfacial Pt sites in contact with Ce can simultaneously act as efficient active sites for H<jats:sub>2</jats:sub>O dissociation, thus significantly enhancing the sluggish Volmer kinetics via Ce‐Pt dual‐site synergy. Concurrently, the electronic structure of surface Pt sites is synergistically regulated through the metal bonds in the HEA and interfacial Pt─O─Ce linkage, thus effectively optimizing its hydrogen adsorption free energy. This work establishes a new paradigm in synergistic catalysis between Pt‐HEA‐clusters and CeO<jats:sub>2</jats:sub> for efficient alkaline HER.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"41 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202514269","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Simultaneously enhancing the intrinsic activity and accelerating H2O dissociation kinetics is crucial for developing advanced low‐Pt electrocatalysts for the alkaline hydrogen evolution reaction (HER). Herein, a low‐noble‐metal Pt‐based high‐entropy alloy clusters coupled with super‐hydrophilic CeO2 on porous carbon support (Pt‐HEA‐cluster/CeO2/C) is developed. The optimized Pt‐HEA‐cluster/CeO2/C catalyst exhibits the faster Volmer‐Tafel mechanism with an exceptionally low overpotential of 12.3 mV at −10 mA cm−2 in 1.0 m KOH, surpassing the benchmark commercial Pt/C (32.2 mV). When integrated into an anion exchange membrane water electrolysis, the system achieves low cell voltages of 1.74 V at 1 A cm−2, and can maintain its performance for at least 500 h at an industrial‐level current density. Operando spectroscopy and density functional theory calculations reveal that H2O preferentially adsorbs on Ce site of CeO2, while the interfacial Pt sites in contact with Ce can simultaneously act as efficient active sites for H2O dissociation, thus significantly enhancing the sluggish Volmer kinetics via Ce‐Pt dual‐site synergy. Concurrently, the electronic structure of surface Pt sites is synergistically regulated through the metal bonds in the HEA and interfacial Pt─O─Ce linkage, thus effectively optimizing its hydrogen adsorption free energy. This work establishes a new paradigm in synergistic catalysis between Pt‐HEA‐clusters and CeO2 for efficient alkaline HER.
基于Pt的高熵簇与超亲水性CeO2的协同催化实现了高效的阴离子交换膜电解
同时提高本征活性和加速水解离动力学对于开发用于碱性析氢反应(HER)的先进低铂电催化剂至关重要。本文开发了一种低贵金属铂基高熵合金簇,在多孔碳载体上偶联超亲水性CeO2 (Pt - HEA -簇/CeO2/C)。优化后的Pt - HEA -簇/CeO2/C催化剂表现出更快的Volmer - Tafel机制,在- 10 mA cm - 2和1.0 m KOH条件下,过电位极低,为12.3 mV,超过了基准的商用Pt/C (32.2 mV)。当集成到阴离子交换膜电解时,该系统在1 A cm - 2时达到1.74 V的低电池电压,并且可以在工业级电流密度下保持其性能至少500小时。Operando光谱和密度泛函理论计算表明,H2O优先吸附在CeO2的Ce位点上,而与Ce接触的界面Pt位点可以同时作为H2O解离的有效活性位点,从而通过Ce - Pt双位点协同作用显著增强了缓慢的Volmer动力学。同时,表面Pt位的电子结构通过HEA中的金属键和界面Pt─O─Ce键协同调节,从而有效地优化其氢吸附自由能。这项工作建立了Pt - HEA -簇和CeO2之间协同催化高效碱性HER的新范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信