Control of Effective Elastomer Density Enables Mechanically Robust and High‐Efficiency Intrinsically Stretchable Organic Solar Cells

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ming Sun, Chen Wang, Mengfei Xiao, Fengbo Sun, Hao Wang, Yujie Xu, Zhen Fu, Wenqing Zhang, Xinxin Xia, Hang Yin, Maojie Zhang, Long Ye, Xiaoyan Du, Xiao‐Tao Hao
{"title":"Control of Effective Elastomer Density Enables Mechanically Robust and High‐Efficiency Intrinsically Stretchable Organic Solar Cells","authors":"Ming Sun, Chen Wang, Mengfei Xiao, Fengbo Sun, Hao Wang, Yujie Xu, Zhen Fu, Wenqing Zhang, Xinxin Xia, Hang Yin, Maojie Zhang, Long Ye, Xiaoyan Du, Xiao‐Tao Hao","doi":"10.1002/adma.202514031","DOIUrl":null,"url":null,"abstract":"Intrinsically stretchable organic solar cells (IS‐OSCs) are highly promising for next‐generation wearable electronics. The incorporation of thermoplastic elastomers (TPEs) provides a cost‐effective strategy to improve mechanical compliance. However, the influence of TPE structural diversity on device performance has been largely overlooked. In this work, the concept of effective elastomer density (<jats:italic>D<jats:sub>e</jats:sub></jats:italic>) is introduced as a unified molecular descriptor to quantitatively evaluate how elastomer structures affect IS‐OSC morphology and functionality. It is demonstrated that increasing <jats:italic>D<jats:sub>e</jats:sub></jats:italic> enhances stretchability by inducing domain coarsening and surface roughening in amorphous regions, but simultaneously prolongs exciton lifetimes and suppresses charge extraction and transport. Notably, IS‐OSCs achieve an optimal balance at a critical <jats:italic>D<jats:sub>e</jats:sub></jats:italic> of 1.5 mol m<jats:sup>−3</jats:sup>, delivering a high initial power conversion efficiency (PCE) of 14.3% and retaining 80% of the initial PCE at 30.6% strain, representing the best performance reported to date for IS‐OSCs employing the elastomer‐plasticization strategy. This descriptor‐based framework provides a predictive and generalizable guideline for the molecular design of elastomers in stretchable optoelectronic devices.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"40 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202514031","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Intrinsically stretchable organic solar cells (IS‐OSCs) are highly promising for next‐generation wearable electronics. The incorporation of thermoplastic elastomers (TPEs) provides a cost‐effective strategy to improve mechanical compliance. However, the influence of TPE structural diversity on device performance has been largely overlooked. In this work, the concept of effective elastomer density (De) is introduced as a unified molecular descriptor to quantitatively evaluate how elastomer structures affect IS‐OSC morphology and functionality. It is demonstrated that increasing De enhances stretchability by inducing domain coarsening and surface roughening in amorphous regions, but simultaneously prolongs exciton lifetimes and suppresses charge extraction and transport. Notably, IS‐OSCs achieve an optimal balance at a critical De of 1.5 mol m−3, delivering a high initial power conversion efficiency (PCE) of 14.3% and retaining 80% of the initial PCE at 30.6% strain, representing the best performance reported to date for IS‐OSCs employing the elastomer‐plasticization strategy. This descriptor‐based framework provides a predictive and generalizable guideline for the molecular design of elastomers in stretchable optoelectronic devices.
有效弹性体密度的控制使机械坚固和高效率的内在可拉伸有机太阳能电池成为可能
本质上可拉伸的有机太阳能电池(IS - OSCs)在下一代可穿戴电子产品中非常有前途。热塑性弹性体(tpe)的掺入为提高机械顺应性提供了一种具有成本效益的策略。然而,TPE结构多样性对器件性能的影响在很大程度上被忽视了。在这项工作中,引入了有效弹性体密度(De)的概念作为统一的分子描述符,以定量评估弹性体结构如何影响is - OSC形态和功能。结果表明,增加De通过诱导非晶态区域的畴粗化和表面粗化来提高拉伸性能,但同时延长激子寿命并抑制电荷的提取和输运。值得注意的是,IS - OSCs在临界De为1.5 mol m−3时达到最佳平衡,提供14.3%的高初始功率转换效率(PCE),并在30.6%的应变下保持80%的初始PCE,代表了迄今为止采用弹性体-塑化策略的IS - OSCs的最佳性能。这种基于描述符的框架为可拉伸光电器件中弹性体的分子设计提供了预测和可推广的指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信