Bi─O Bridges Trigger Lattice Strain‐Electronic Synergy at Inherent In Sites in ZnIn2S4 for Boosting Solar‐to‐H2O2 Conversion

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fangyuan Chen, Gaoqing Cao, Qian Liu, Yingnan Duan, Weizun Li, Zhurui Shen
{"title":"Bi─O Bridges Trigger Lattice Strain‐Electronic Synergy at Inherent In Sites in ZnIn2S4 for Boosting Solar‐to‐H2O2 Conversion","authors":"Fangyuan Chen, Gaoqing Cao, Qian Liu, Yingnan Duan, Weizun Li, Zhurui Shen","doi":"10.1002/anie.202518232","DOIUrl":null,"url":null,"abstract":"Artificial H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> photosynthesis without sacrificial agents represents a promising yet challenging route for sustainable chemical production, hindered by low solar‐to‐chemical conversion (SCC) efficiency (natural photosynthesis is only ∼0.1%). Notably, the abundant inherent active sites within base semiconductors remain substantially underutilized. Here, we incorporate Bi into ZnIn<jats:sub>2</jats:sub>S<jats:sub>4</jats:sub> (ZIS) lattices through atomic‐level Bi─O coordination, activating inherent In sites via synergistic lattice strain and electron rearrangement. Multiscale characterization confirms the formation of BiO<jats:sub>2</jats:sub>S<jats:sub>2</jats:sub>–ZIS with quantified 1.51% lattice elongation. Integrated theoretical calculations and in situ spectroscopic analyses reveal that Bi─O coordination increases electron density at adjacent In sites, which lowers the <jats:italic>p</jats:italic>‐band center and enhances carrier separation. Meanwhile, lattice strain strengthens Bi─O orbital hybridization and weakens In─O covalency. Thus, these effects cooperatively optimize carrier dynamics. Then, the O<jats:sub>2</jats:sub> adsorption is Pauling‐type at In site to Yeager‐type adsorption at the In─Bi dual sites. Simultaneously, Bi─O bridges function as proton reservoirs to facilitate *OOH formation and *H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> synthesis through enhanced Coulombic interactions. The resulting strain‐electron synergy achieves an unprecedented H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> production rate of 6.06 mmol g<jats:sup>−1</jats:sup> h<jats:sup>−1</jats:sup> and 2.32% SCC efficiency, surpassing all reported inorganic semiconductor photocatalysts. This work demonstrates exceptional photocatalytic performance and establishes a highly effective strategy for inherent site activation.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"82 1","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202518232","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial H2O2 photosynthesis without sacrificial agents represents a promising yet challenging route for sustainable chemical production, hindered by low solar‐to‐chemical conversion (SCC) efficiency (natural photosynthesis is only ∼0.1%). Notably, the abundant inherent active sites within base semiconductors remain substantially underutilized. Here, we incorporate Bi into ZnIn2S4 (ZIS) lattices through atomic‐level Bi─O coordination, activating inherent In sites via synergistic lattice strain and electron rearrangement. Multiscale characterization confirms the formation of BiO2S2–ZIS with quantified 1.51% lattice elongation. Integrated theoretical calculations and in situ spectroscopic analyses reveal that Bi─O coordination increases electron density at adjacent In sites, which lowers the p‐band center and enhances carrier separation. Meanwhile, lattice strain strengthens Bi─O orbital hybridization and weakens In─O covalency. Thus, these effects cooperatively optimize carrier dynamics. Then, the O2 adsorption is Pauling‐type at In site to Yeager‐type adsorption at the In─Bi dual sites. Simultaneously, Bi─O bridges function as proton reservoirs to facilitate *OOH formation and *H2O2 synthesis through enhanced Coulombic interactions. The resulting strain‐electron synergy achieves an unprecedented H2O2 production rate of 6.06 mmol g−1 h−1 and 2.32% SCC efficiency, surpassing all reported inorganic semiconductor photocatalysts. This work demonstrates exceptional photocatalytic performance and establishes a highly effective strategy for inherent site activation.
Bi - O桥触发ZnIn2S4固有In位的晶格应变-电子协同作用,以促进太阳能到H2O2的转化
不使用牺牲剂的人工H2O2光合作用是一种有希望但具有挑战性的可持续化工生产途径,其阻碍因素是太阳能-化学转化(SCC)效率低(自然光合作用仅为~ 0.1%)。值得注意的是,基础半导体中丰富的固有活性位点仍未得到充分利用。在这里,我们通过原子级Bi─O配位将Bi结合到ZnIn2S4 (ZIS)晶格中,通过协同晶格应变和电子重排激活固有的In位。多尺度表征证实了BiO2S2-ZIS的形成,量化的晶格伸长率为1.51%。综合理论计算和原位光谱分析表明,Bi─O配位增加了相邻in位的电子密度,从而降低了p带中心,增强了载流子分离。同时,晶格应变增强了Bi─O轨道杂化,减弱了In─O共价。因此,这些效应协同优化载流子动力学。O2在In位的吸附为Pauling型,在In─Bi双位的吸附为Yeager型。同时,Bi─O桥作为质子储存器,通过增强的库仑相互作用促进*OOH的形成和*H2O2的合成。由此产生的应变-电子协同作用实现了前所未有的H2O2产率6.06 mmol g−1 h−1和2.32%的SCC效率,超过了所有报道的无机半导体光催化剂。这项工作展示了卓越的光催化性能,并建立了一种非常有效的内在位点激活策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信