Photon Emission Gain in Er-Doped Si Light-Emitting Diodes by Impact Excitation

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Huayou Liu, , , Jiayuan Zhao, , , Jing Zhang, , , Huan Liu, , , Jiajing He, , , Ulrich Kentsch, , , Shengqiang Zhou, , , Manfred Helm, , and , Yaping Dan*, 
{"title":"Photon Emission Gain in Er-Doped Si Light-Emitting Diodes by Impact Excitation","authors":"Huayou Liu,&nbsp;, ,&nbsp;Jiayuan Zhao,&nbsp;, ,&nbsp;Jing Zhang,&nbsp;, ,&nbsp;Huan Liu,&nbsp;, ,&nbsp;Jiajing He,&nbsp;, ,&nbsp;Ulrich Kentsch,&nbsp;, ,&nbsp;Shengqiang Zhou,&nbsp;, ,&nbsp;Manfred Helm,&nbsp;, and ,&nbsp;Yaping Dan*,&nbsp;","doi":"10.1021/acsphotonics.5c01769","DOIUrl":null,"url":null,"abstract":"<p >This work demonstrates photon emission gain, i.e., emission of multiple photons per injected electron, through impact excitation in Er-doped silicon light-emitting diodes (LEDs). Conventional methods for exciting Er ions in silicon suffer from low efficiency due to mismatched energy transfer between exciton recombination and Er excitation. Here, we propose a reverse-biased Si PN junction diode, where ballistically accelerated electrons induce inelastic collisions with Er ions, enabling tunable excitation via electric field modulation. Theoretical modeling reveals that photon emission gain arises from multiple impact excitations by a single electron traversing the electroluminescence region, with the gain value approximating the ratio of emission region width to electron mean free path, i.e., <i>G</i> = <i>L</i><sub>ex</sub>/<i></i><math><mi>l</mi></math>. Experimental results show an internal quantum efficiency (IQE) of 1.84% at 78 K, representing a 20-fold enhancement over the room-temperature performance. This work provides a critical foundation for on-chip integration of silicon-based communication-band lasers and quantum light sources.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"12 10","pages":"5782–5787"},"PeriodicalIF":6.7000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.5c01769","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work demonstrates photon emission gain, i.e., emission of multiple photons per injected electron, through impact excitation in Er-doped silicon light-emitting diodes (LEDs). Conventional methods for exciting Er ions in silicon suffer from low efficiency due to mismatched energy transfer between exciton recombination and Er excitation. Here, we propose a reverse-biased Si PN junction diode, where ballistically accelerated electrons induce inelastic collisions with Er ions, enabling tunable excitation via electric field modulation. Theoretical modeling reveals that photon emission gain arises from multiple impact excitations by a single electron traversing the electroluminescence region, with the gain value approximating the ratio of emission region width to electron mean free path, i.e., G = Lex/l. Experimental results show an internal quantum efficiency (IQE) of 1.84% at 78 K, representing a 20-fold enhancement over the room-temperature performance. This work provides a critical foundation for on-chip integration of silicon-based communication-band lasers and quantum light sources.

Abstract Image

Abstract Image

冲击激发掺铒硅发光二极管的光子发射增益
这项工作证明了在掺铒硅发光二极管(led)中,通过冲击激发,光子发射增益,即每个注入电子发射多个光子。传统的硅中激发Er离子的方法由于激子复合和Er激发之间的能量传递不匹配而导致效率低。在这里,我们提出了一个反向偏置的Si PN结二极管,其中弹道加速的电子诱导与Er离子的非弹性碰撞,通过电场调制实现可调谐的激发。理论建模表明,光子发射增益是由单个电子穿越电致发光区域的多次冲击激发产生的,增益值近似于发射区域宽度与电子平均自由程的比值,即G = Lex/l。实验结果表明,在78 K时,内部量子效率(IQE)为1.84%,比室温性能提高了20倍。这项工作为硅基通信波段激光器和量子光源的片上集成提供了重要的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信